Library for organization of image recognition systems

Master's thesis

by

Oleksandr Shyrokov

http://www.ece.unh.edu/svpal/

Thesis adviser: Dr. Messner

May 2002

Outline

- Introduction
- Approach
- Automatic micro object recognition system
- Automatic human brain cell recognition
- Bacteria counting
- Library
- Conclusion

Where are we?

- Introduction
- Approach
- Automatic micro object recognition system
- Automatic human brain cell recognition
- Bacteria counting
- Library
- Conclusion

Introduction

- What is a Recognition System?
- Who needs it?
- What is done?
- What can be done?

Introduction (What)

- Acquire
 - Get the information from the sensors (camera)
- Processing
 - Enhance image; locate region of interests; get additional information (features)
- Make a decision
 - Label the situation
- React
 - Perform a corresponding action

Introduction (Who)

- Industry
 - High speed
 - Low error rate
- Science
 - Repetitive tasks (measurements,...)
- Hazardous environment
 - Radiation, distance

Introduction (What is done)

- Dedicated companies
 - Special hardware and software (high cost)
 - » Datacube
 - » Zeiss
- Software packages
 - Matlab, mathcad, etc...
- Absence of the common convention
 - Hard to reuse the work done by the others

Introduction (What can be done)

- Modularity
 - Acquisition
 - Object separation
 - Feature extraction
 - Classification
 - Displaying
- Standard
 - Predefined interface

Where are we?

- Introduction
- Approach
- Automatic micro object recognition system
- Automatic human brain cell recognition
- Bacteria counting
- Library
- Conclusion

Approach

- Human brain cell recognition research by Mr. Pawlak (HBCRR)
 - Matlab scripts
- Generalization
 - Bacteria counting
- Plug-in concept
 - Extendable system
- Interface definition
 - Exported functions and parameters

Approach (HBCRR)

- Human brain cell recognition research
 - Acquisition
 - » Acquire data
 - Object separation
 - » Locate cells
 - Feature extraction
 - » Make polar transform
 - » More features
 - Classification
 - » Classify each cell
 - Displaying
 - » Show the result

Approach (Generalization)

- Bacteria counting
 - Acquisition
 - » Acquire data
 - Object separation
 - » Locate bacteria
 - Feature extraction
 - » Find area of each bacteria
 - Classification
 - » Count bacteria
 - Displaying
 - » Show the result

Approach (Plug-ins)

- What should be implemented as a plug-in?
 - Acquisition plug-in
 - Object Separation plug-in
 - Feature extraction plug-in
 - Database plug-in
 - Displaying plug-in

Approach (Interfacing)

- Acquisition
 - List of variables
 - List of images
- Segmentation
 - List of bounding rectangles
- Features
 - Add list of variables to the bounding rectangles
- Classification
 - Uses list of variables for each object
- Displaying
 - Access to all object data

Where are we?

- Introduction
- Approach
- Automatic micro object recognition system (AMORS)
- Automatic human brain cell recognition
- Bacteria counting
- Library
- Conclusion

AMORS

- Main program
- System organization
- Modes of operation
 - Normal mode (run-time mode)
 - Research mode (active setup)
- Graphical User Interface (GUI)

AMORS (Program)

- Main Program
 - Why AMORS
 - Plug-ins
 - GUI
 - Configuration file

AMORS (System)

- Three main blocks
 - Acquisition
 - » Acquisition plug-in
 - Processing
 - » Object Separation plug-in
 - » Feature extraction plug-in
 - » Classification plug-in
 - Displaying
 - » Displaying plug-in

AMORS (Acquisition)

- Acquisition
 - Camera
 - Microscope
 - XYZ translation stage

AMORS (Processing)

Processing

- Separation
 - » Find objects
- Feature extraction
 - » Multiple features
- Classification
 - » Database

AMORS (Mode 1)

- Normal mode (Run-time)
 - Minimum interaction with the user

AMORS (Mode 2)

- Research mode (active setup)
 - A user can find parameters of the plug-ins

AMORS (GUI 1)

- Main window
 - Configure
 - Setup
 - Launch
 - Observe progress

AMORS (GUI 1)

- Main window
 - Configure
 - Setup
 - Launch
 - Observe progress

AMORS (GUI 2)

- Configuration dialog box
 - Unique identifier for plug-ins
 - Plug-ins type is detected
 - Ordering of feature plug-ins

Where are we?

- Introduction
- Approach
- Automatic micro object recognition system
- Automatic human brain cell recognition (HBCR)
- Bacteria counting
- Library
- Conclusion

HBCR (Problem)

- Problem
 - Huntington's Disease (HD)
 - Brain tissue
 - Tracing cells
 - Identification by experts
 - » Oligodendrocyte (Oligo)
 - » Astrocyte (Astro)
 - » Neuron (Neuro)
 - » Microgila
 - » Endothelial

HBCR (Cells)

Examples of cells:

HBCR (Original)

- Mr. Pawlak's research (Matlab scripts)
 - Image segmentation
 - » Region Growing method
 - Polar transform
 - Feature extraction
 - » Area, mean value, etc...
 - Fuzzy logic
 - » Membership functions

HBCR (AMORS)

- Application for AMORS
 - Acquisition
 - » DummyAcq plug-in for TIFF (Tagged Image File Format) files
 - Image segmentation
 - » RegGrow plug-in
 - Feature extraction
 - » Polar transform plug-in
 - » pawlak_features plug-in
 - Classification
 - » IniDB plug-in for fuzzy logic
 - Displaying
 - » SimpleDispaly plug-in

HBCR (Displaying 1)

SimpleDisplay plug-in

HBCR (Displaying 2)

- Histograms
 - Image histogram
 - Histogram for all numerical

parameters

HBCR (Displaying 3)

Histogram region selection

HBCR (Improvements)

- Improvements
 - 3D Acquisition
 - » Analyze stack of images taken with different focal depths
 - Voting
 - Self-Organizing Map (SOM)
 - » Solves problem of defining the membership functions

HBCR (SOM 1)

- Mapping from the input data space **R**ⁿ onto a regular 2D array of nodes
 - Node i; parametric vector m_iÎ Rⁿ associated with node
 i; Node location is in form (x,y);
 - This map has the size 5 by 4

HBCR (SOM 2)

- Let me explain SOM using the following example
 - Need to separate cucumbers, tomatoes and watermelons
 - We are given the area occupied by the vegetable and the maximum distance, as shown below

HBCR (SOM 3)

- Training data
 - One need a predefined data to train the map

HBCR (SOM 4)

- Learning: Initializing
 - $-m_i(0)$ is assigned randomly

HBCR (SOM 5)

- Learning: Adjusting the map
 - Shifting the closest node with its neighborhood closer to the input vector

$$m_i(t+1) = m_i(t) + h_{ci}(t) \cdot [x(t) - m_i(t)]$$

- t discrete-time coordinate; i node index; m_i node vector;
- x input vector; h_{ci} so-called neighborhood kernel

HBCR (SOM 6)

- Learning: Neighborhood kernel
 - Position dependence
 - » $\mathbf{h_{ci}} = \mathbf{h}(||\mathbf{r_c} \mathbf{r_i}||;\mathbf{t})$, where $\mathbf{r_c}\hat{\mathbf{l}} \ \mathbf{R}^2$ and $\mathbf{r_i}\hat{\mathbf{l}} \ \mathbf{R}^2$ radius vectors of nodes \mathbf{c} and \mathbf{i}
 - » \mathbf{h}_{ci} goes to 0 with increasing $\|\mathbf{r}_{c} \mathbf{r}_{i}\|$
 - » defines the "stiffness" of the "elastic surface"
 - Time dependence
 - » get smaller with time
 - » learning rate
 - Two steps
 - » Ordering
 - » Fine tuning

HBCR (SOM 7)

Learning: Training result

HBCR (SOM 8)

- Learning: Representation
 - high dimensions do not allow the direct presentation of mapping process
 - nodes are forming 2D grid

HBCR (SOM 9)

- Learning: Map calibration
 - Assigning labels of training samples to the nodes (C – cucumber, T – tomato, W – watermelon)

HBCR (SOM 10)

- Learning: Quantization error
 - finite number of nodes
 - approximation of sample distribution
 - quantization error average difference between the input vector and the best-match vector

HBCR (SOM 11)

- Using SOM for cell recognition
 - SOM_PAK software package
 - » randinit initializes the map for training
 - » vsom − trains the map
 - » vcal labels the map vectors
 - » visual finds best-matching nodes
 - » qerror quantization error
 - SOMDB plug-in
 - » Parameter setup for the training

HBCR (SOM 12)

SOMDB plug-in setup

HBCR (SOM 13)

Parameters used for training

Name\Step	Ordering step	Fine tuning
Number of iterations	1,000	10,000
Learning rate	0.05	0.01
Radius of training area	10	3

■ Example with the grid size 12x8 nodes

HBCR (Future work)

- Work to be done
 - Testing of the different separation methods, by using different plug-ins
 - Make analysis to find the best learning parameters for SOM
 - Features, which give maximum separation of the cells

Where are we?

- Introduction
- Approach
- Automatic micro object recognition system
- Automatic human brain cell recognition
- Bacteria counting (BC)
- Library
- Conclusion

BC (Problem)

Pure culture vs. industrial specimen

Industrial specimen

Pure culture (inverted)

BC (Solution)

- Acquisition
 - MaxPci
 - Zeiss
 - FromFileAcq plug-in
- Methods
 - Threshold
 - Morphology operations
 - Clusters division

BC (Result)

- Accuracy (95 %) the same as for human
- Speed more then 5 times faster than for human

Input (inverted)

Counted (bacteria)

BC (Future work)

- Work to be done
 - Automatic acquisition
 - Automatic thresholding
 - Counting in the industrial specimens

Where are we?

- Introduction
- Approach
- Automatic micro object recognition system
- Automatic human brain cell recognition
- Bacteria counting (BC)
- Library
- Conclusion

Library

- Statically linked library
 - interfaces.lib
- Portability
 - Standard Template Library
- Classes
 - CSJIniFile (configuration files)
 - CSJBuffer (2D data)
 - CSJImage (Color images)
 - CSJImageList (List of images)
 - CSJObjectInfo (Object description)
 - CSJObjectInfoList (List of objects)
 - CSJSpecimen (Description of the specimen)

Library (CD)

- Open sources
- Templates
- Examples
- Documentation
- Applications

Library (Future work)

- Work to be done
 - Test for different operating systems
 - Non-linear connection of the plug-ins
 - Feedbacks
 - Standard
 - Code maintenance

Where are we?

- Introduction
- Approach
- Automatic micro object recognition system
- Automatic human brain cell recognition
- Bacteria counting (BC)
- Library
- Conclusion

Conclusion

- Ready-to-use procedure of creating the recognition system
- Free
- Examples
- Templates
- Documentation

References

- A. J. Pawlak, "Automatic human brain cell recognition", Master's Thesis, September 1998
- R.O. Duda, P.E. Hart, D.G. Stork, "Pattern Calssification", 2nd edition, Wiley-Interscience Publications, 2000
- Full list online: http://www.ece.unh.edu/svpal/

The end

Questions, comments?

Maybe a little demo?

Thank you!