

LIBRARY FOR ORGANIZATION OF IMAGE RECOGNITION SYSTEMS

BY

OLEKSANDR SHYROKOV

BS in ECE, Odessa State Polytechnic University, 2000

THESIS

Submitted to the University of New Hampshire

in Partial Fulfillment of

the Requirements of the Degree of

Master of Science

in

Electrical Engineering

September, 2002

This thesis has been examined and approved.

Thesis director, Richard A. Messner, Ph.D.
Associate Professor of Electrical and Computer Engineering

L. Gordon Kraft, III, Ph.D.

Professor of Electrical and Computer Engineering

W. Thomas Miller, III, Ph.D.

Professor of Electrical and Computer Engineering

Andrew L. Kun, Ph. D.

Assistant Professor of Electrical and Computer Engineering

Date

iii

DEDICATION

I would like to dedicate this thesis to my mother Elvira and sister Alina for their love and support.

iv

ACKNOWLEDGEMENTS

I would like to thank my thesis advisor, Dr. Richard Messner, for his time and effort and for

making the resources of the Synthetic Vision and Pattern Analysis Laboratory (SVPAL) available for my

research.

Many thanks to my academic advisor, Dr. Andrzej Rucinski, for the support and help.

A special thanks to Dr. Russell Carr of the University of New Hampshire for the use of his

microscope in the process of image capture. And Dr. Elise Sullivan from Microbiology Department for

cooperation and help provided for the development of the test applications.

I would also like to thank Dr. Kun, Dr. Miller and Dr. Kraft for serving on my defense committee

and reviewing my thesis.

Much appreciation goes to all my friends who supported me during the development of my thesis.

v

TABLE OF CONTENTS

DEDICATION.. iii

ACKNOWLEDGEMENTS ... iv

LIST OF FIGURES ...viii

ABSTRACT ...ix

CHAPTER 1 PROBLEM STATEMENT...1
1.1 WHAT IS A RECOGNITION SYSTEM?... 1
1.2 WHO NEEDS RECOGNITION SYSTEMS?.. 2
1.3 WHAT IS CURRENTLY DONE?.. 3
1.4 PRICE INFORMATION... 4
1.5 WHAT CAN BE DONE?... 5

CHAPTER 2 APPROACH...7
2.1 STARTING POINT.. 7
2.2 PLUG-INS.. 8
2.2 ACQUSITION... 9
2.3 SEGMENTATION... 10
2.4 DISPLAYING ... 10
2.5 TRANSFORMATIONS.. 11
2.6 INTERFACING ... 11

2.6.1 Acquisition... 12
2.6.2 Segmentation ... 13
2.6.3 Features... 13
2.6.4 Classification ... 13
2.6.5 Displaying .. 13

2.7 MODES OF OPERATION.. 14
2.8 ABSTRACTING.. 14

CHAPTER 3 IMPLEMENTATION EXAMPLE...16
3.1 MAIN APPLICATION... 16
3.2 SYSTEM ORGANIZATION... 17
3.3 NORMAL AND RESEARCH MODES .. 19
3.4 AMORS USER INTERFACE ... 19
3.5 GENERAL PURPOSE PLUG-INS .. 23

CHAPTER 4 AUTOMATIC HUMAN BRAIN CELL RECOGNITION..24
4.1 PROBLEM STATEMENT .. 24
4.2 IMAGE SEGMENTATION... 26
4.3 POLAR TRANSFORM... 28
4.4 FEATURE PLUG-INS ... 29
4.5 FUZZY LOGIC ... 30
4.6 PERFORMANCE... 31
4.7 3D ACQUISITION.. 32
4.8 SOM DATABASE.. 33

4.8.1 Self-organized maps... 34
4.8.2 Learning.. 34

vi

4.8.3 Example .. 36
4.8.4 Implementation.. 39
4.8.5 Results... 40

CHAPTER 5 COUNTING OF BACTERIA ..43
5.1 PROBLEM STATEMENT .. 43
5.2 PREVIOUS WORK.. 44
5.3 ACQUISITION AND DISPLAYING... 44
5.4 METHODS ... 45
5.5 RESULTS... 46

5.5.1 Experiment 1.. 47
5.5.2 Experiment 2.. 48
5.5.3 Experiment 3.. 48
5.5.4 Experiment 4.. 49

5.6 CONCLUSIONS.. 49
CHAPTER 6 DISCUSSION ...51

APPENDIX A INTERFACE LIBRARY DESCRIPTION ..54
A.1 INTERFACES.LIB LIBRARY... 54
A.2 INTERFACE OBJECTS AND FUNCTIONS... 54
A.3 CLASSES DESCRIPTION... 55

A.3.1 CSJBuffer.. 55
A.3.2 CSJRGBAColor... 60
A.3.3 CSJImage .. 62
A.3.4 CSJImageList ... 67
A.3.5 CSJRect ... 68
A.3.6 CSJObjectInfo .. 70
A.3.7 CSJObjectInfoList ... 72
A.3.8 CSJSpecimen .. 73
A.3.9 CSJIniFile .. 77

APPENDIX B INTERFACE FUNCTION DESCRIPTION ...81
B.1 NORMAL MODE.. 81
B.2 RESEARCH MODE ... 82
B.3 PROCESSING ROUTINES.. 83
B.4 UTILITY ROUTINES... 84

APPENDIX C PLUG-IN INTERFACING...86
C.1 COMMON FUNCTIONS FOR ALL PLUG-INS.. 86
C.2 ACQUISITION PLUG-IN.. 87
C.3 DISPLAY PLUG-IN.. 88
C.4 OBJECT SEPARATION PLUG-IN .. 89
C.5 FEATURE EXTRACTION PLUG-IN... 89
C.6 DATA BASE PLUG-IN... 90

APPENDIX D DESIGNED PLUG-IN DES CRIPTION...91
D.1 DUMMYACQ PLUG-IN .. 91
D.2 FROMFILEACQ PLUG-IN .. 92
D.3 SIMPLEDISPLAY PLUG-IN .. 92
D.4 AREA AND CENTER PLUG-INS... 97
D.5 MINAREA AND MAXAREA PLUG-INS.. 97
D.6 INIDB PLUG-IN ... 98
D.7 SOMDB PLUG-IN...101

D.7.1 Parameters ...101

vii

D.7.2 Format of input/output files ...102
D.7.3 Purpose of each program..103
D.7.4 Setup dialog box for SOMDB ...104

D.8 BLOB SEPARATION ...105
D.9 SIMPLE REJECTER PLUG-IN ...105
D.10 MORPHOLOGYOP PLUG-IN..105
D.11 AREADIVISION PLUG-IN..106
D.12 POLAR PLUG-IN...107
D.13 SAVELOADOBJ PLUG-IN..107

LIST OF REFERENCES ... 108

viii

LIST OF FIGURES

FIGURE 1.1 EXAMPLE OF THE BLOCK DIAGRAM OF THE SYSTEM ORGANIZATION.. 6
FIGURE 2.1 DIAGRAM OF RECOGNITION PROCESS FOR HUMAN BRAIN CELL RECOGNITION.................................. 8
FIGURE 2.2 MODULE CONNECTION.. 12
FIGURE 3.1 MAIN APPLICATION ORGANIZATION... 17
FIGURE 3.2 BLOCK DIAGRAM OF PLUG-IN CONNECTIONS.. 18
FIGURE 3.3 BLOCK DIAGRAM FOR NORMAL MODE .. 19
FIGURE 3.4 BLOCK DIAGRAM FOR RESEARCH MODE ... 19
FIGURE 3.5 MAIN WINDOW OF AMORS ... 20
FIGURE 3.6 MAIN WINDOW DURING THE EXECUTION ... 21
FIGURE 3.7 CONFIGURATION DIALOG BOX... 21
FIGURE 4.1 EXAMPLES OF CELLS (A) - MICROGILA AND ENDOTHELIAL; (B) - NEURON, ASTROCYTE AND

OLIGODENDROCYTE.. 25
FIGURE 4.2 (A) ORIGINAL GRAYSCALE IMAGE; (B) TRANSFORMED IMAGE ... 27
FIGURE 4.3 REGION-GROWING ALGORITHM.. 28
FIGURE 4.4. POLAR TRANSFORM MAPPING DIAGRAM.. 29
FIGURE 4.5 THE CONFIGURATION OF THE APPLICATION FOR AMORS.. 32
FIGURE 4.6 ILLUSTRATION OF THE MAXIMUM DISTANCE... 36
FIGURE 4.7 THE DISTRIBUTION OF INPUT SAMPLES... 36
FIGURE 4.8 (A) MAP WITH THE SIZE 5X4 (B) RANDOMLY INITIALIZED MAP IN THE SAMPLE SPACE................... 37
FIGURE 4.9 THE MAP AFTER TRAINING ... 38
FIGURE 4.10 REPRESENTATION OF THE MAP .. 38
FIGURE 4.11 LABELED MAP REPRESENT ATION.. 39
FIGURE 4.12 TRAINING PARAMETERS FOR THE SOM ... 40
FIGURE 4.13 SOM WITH SIZE 12 BY 8 USING 5 FEATURES .. 40
FIGURE 4.14 SOM WITH SIZE 20 BY 16 USING 5 FEATURES .. 41
FIGURE 4.15 SOM WITH SIZE 12 BY 8 USING AREA, DISTINCTNESS AND ENT ROPY AS FEATURES..................... 42
FIGURE 4.16 SOM WITH SIZE 12 BY 8 USING AREA, ROUNDNESS AND MAXIMUM RADIUS AS FEATURES........ 42
FIGURE 5.1 INDUSTRIAL EXAMPLE.. 44
FIGURE 5.2 PURE CULTURE (INVERTED)... 44
FIGURE 5.3 DIFFERENT KIND OF BACTERIA IN THE PURE CULTURE (INVERTED)... 45
FIGURE 5.4 THE CONFIGURATION OF THE PLUG-INS FOR AMORS TO COUNT BACTERIA................................... 46
FIGURE 5.5 IMAGE TAKEN FROM MICROSCOPE (INVERTED)... 47
FIGURE 5.6 INPUT IMAGE (INVERTED)... 47
FIGURE 5.7 RESULT (INVERTED).. 47
FIGURE 5.8 IMAGE TAKEN FROM THE MICROSCOPE (INVERTED)... 48
FIGURE 5.9 INPUT IMAGE (INVERTED)... 48
FIGURE 5.10 RESULT (INVERTED).. 48
FIGURE 5.11 IMAGE WITH APPLIED THRESHOLD (INVERTED).. 48
FIGURE 5.12 INPUT IMAGE (INVERTED)... 48
FIGURE 5.13 IMAGE WITH APPLIED THRESHOLD (INVERTED).. 48
FIGURE 5.14 INPUT IMAGE (INVERTED)... 49
FIGURE 5.15 RESULT (INVERTED).. 49
FIGURE D.1 SETUP DIALOG BOX OF DUMMYACQ PLUG-IN.. 92
FIGURE D.2 MAIN WINDOW OF SIMPLEDISPLAY... 93
FIGURE D.3 INFORMATION DIALOG BOX... 95
FIGURE D.4 CHOOSE HISTOGRAM DIALOG BOX... 95
FIGURE D.5 HISTOGRAM WINDOW .. 96
FIGURE D.6 ORIGINAL IMAGE (A) AND IMAGE WITH SELECTION APPLIED (B) .. 97
FIGURE D.7 MEMBERSHIP FUNCTIONS.. 99
FIGURE D.8 SOMDB SETUP DIALOG BOX..104
FIGURE D.9 MORPHOLOGYOP SETUP DIALOG BOX...106

ix

ABSTRACT

LIBRARY FOR ORGANIZATION OF IMAGE RECOGNITION SYSTEMS

by

Olexander Shyrokov

University of New Hampshire, September, 2002

In many recognition problems it is possible to divide the recognition task into a collection of

separate processes. This thesis develops a method that simplifies the creation of automatic recognition

systems. Formal separation of different algorithm steps was performed and an interface for communicating

between each step was developed. In order to evaluate the robustness of the proposed method, the

algorithms developed by Mr. Tony Pawlak (M.S. UNH ECE 1998) in his thesis work on automatic human

brain cell recognition were implemented. The original human brain cell recognition research was done

using Matlab software [12]. After the original recognition process was ported into the proposed standard,

improvements were made to demonstrate how the designed system could be extended and modified. To

demonstrate how a "new" recognition task could be implemented a different recognition problem was

chosen: the counting of bacteria in a pure culture. Documented examples show that the proposed method

and standards simplify the organization, execution, and maintenance of the recognition procedures.

Developed in this thesis is a ready to use library for various algorithms with examples and

documentation as well as a full discussion on how researchers can develop their own modules for inclusion.

Complete documentation on standards and interfacing is included in appendices.

1

CHAPTER 1

PROBLEM STATEMENT

The following chapter states what a recognition system is, and who needs it. There is a big

demand for automatic systems, to make a decision without human supervision. It is possible to create such

systems and they are used in industry. It is possible to create a platform that will simplify the development

of the recognition systems not only for industry purposes, but also for the research purposes. The chapter

discusses how recognition systems are done and how process of their development can be simplified.

1.1 What is a Recognition System?

Merriam-Webster’s Collegiate Dictionary [1] describes the noun “recognition” as “the action of

recognizing; the state of being recognized; special notice or attention”. The process of recognition implies

the process of identification! In science and industry there has always been a need for procedures that

require identification of various objects and/or actions. After identification is performed an action

corresponding to the particular case should be performed. This action could be counting, recording, or

providing a control signal. The simplest (and in many cases most robust) solution for such identification

was to use a human, to observe the situation and make the proper decision. But there are some

disadvantages, such as human error, cost of human employment, and limit of the speed with which the

work can be accomplished. The next logical step is to make this process automatic (i.e., design a machine,

which is able to make the decision). This raises many questions regarding how to make a machine decide

the what, where, and how in the decision making chain. These questions have resulted in the steep rise of

research in the field of pattern recognition. Any system that can recognize something and make some

decision based upon that recognition is called a Recognition System.

2

1.2 Who Needs Recognition Systems?

Any field of industry or science where repetitive tasks are performed potentially could benefit

from a machine designed to perform those tasks. Consider an example from industry. During the

production of light bulbs, each bulb should be inspected to assure that it does not have any cracks in the

glass and that the shape of the glass envelope is correct. The company that produces these light bulbs could

employ people to check each bulb manually. This is not very efficient since a human can work with only a

small number of bulbs per hour. Furthermore a human is subject to fatigue and could potentially make

errors. To alleviate these problems the job might be designed as an automatic system with a camera and a

computer. The view of a bulb is acquired through the camera, digitized and then fed to a digital computer

where certain algorithms are coded and executed in order to detect whether the bulb should be rejected or

not. Because of the variability and dimensionality of the problem this may not be an easy system to design

and could be high in cost. The desirability of such a system would be that once it is designed and built the

system could work for a long time without additional expenses. The cost savings would be from not having

to employ as many humans in the loop. Of course the system still needs to be maintained by a specialist,

but if such a system replaces a number of people who were doing this job manually, it is cheaper to use this

system with one engineer. Most industries today, which are using large numbers of production lines, use

recognition systems in their workflow. Extensive research must be done, in order to make these systems

better. Experiments must be performed and data must be analyzed in order to make the proper choices in

the system design.

Industrial settings are not the only place where recognition is necessary. In many areas of science,

scientists must perform many repetitive recognition tasks. In my work, I have found that many science

applications often require observations that are very time consuming and tedious. An automatic method for

these observations would save the scientists (and graduate students) much time. A good example would be

the problem in microbiology science, where the counting of bacteria is required. At the moment, this is

done in the following manner in the UNH College of Life Sciences and Agriculture (COLSA): A human is

in the loop, who is taking samples and counting bacteria manually while looking into the microscope. From

3

my conversation with people involved in this kind of research, they could spend hours and hours looking

into the microscope. It is observed that this causes potential health problems (eyes, spine and so on). An

example is given in Chapter 5 that shows what I did to simplify their job and how this work helps to solve

these problems.

1.3 What is Currently Done?

Because of the high demand for automatic recognition systems, companies have been formed to

provide both special hardware and software to address recognition problems. These companies produce

special hardware and/or design systems for specific jobs. An example of such a company is Datacube, Inc.

(www.datacube.com). This company is mainly targeting industrial and medical recognition problems.

Other companies such as Zeiss (www.zeiss.com) provide recognition tools for simplification of scientific

data acquisition. Now let us return to our example of counting bacteria for a microbiology problem and see

what is typically done to automate these problems. Zeiss sells microscopes coupled to digital cameras that

allow scientists to use the high-resolution display of a computer to help them make their decision. Zeiss

even made a step forward providing some software tools to adjust parameters of acquired pictures (contrast,

color balance and so on). But still, since the software is not capable of implementing the desired task,

scientists count bacteria manually. Counting of bacteria is one of the most time-consuming jobs in the

Microbiology Department. Having a tool that would do the whole process automatically (or at least

partially automatic) would be a big help for microbiology researchers.

What I have just described is a specific problem for microbiology. To explore a more complex

recognition problem and understand what type of algorithms are used, I refer to the thesis of Mr. Pawlak.

His thesis is entitled, “Automatic human brain recognition system” [2] and deals with brain cell recognition

for research on Huntington's Disease. In his research Mr. Pawlak makes significant use of the Matlab

software package [12]. The data images were acquired in BMP (BitMaP) format using Datacube hardware

and software. These images were converted into TIFF (Tagged Image File Format) format using a program

for image converting (Adobe® Photoshop® [13] or similar). Then Matlab was utilized to write the routines

necessary to perform the algorithms used in his research. Matlab is a very powerful and flexible system for

analysis and experimentation but is not very user friendly for specific tasks. At present, this is the way most

4

research is done with Matlab. If some good method or algorithm is designed during one’s research, it is

almost impossible to use the code without rewriting it for the new task. This is because notations and

structures are different in the original and a new task. One way to make parts of different research

compatible is to use a standardized approach. This work describes a method of system organization that

would help to solve this problem.

1.4 Price information

As was mentioned in the section above, there are some products that simplify and take care of

some aspects of the monotonous work for scientists. However, the next question after availability of the

product is the cost of the product. In many instances the final product consists of both hardware (camera,

controllers, computer, acquisition boards, etc.) and software (applications, development environments,

etc.). It rarely happens that the software part is absent. To perform a certain task we need a certain quality

of the hardware. It is very hard to argue with this fact. If you want to count bacteria automatically you need

a microscope with enough magnification to see these bacteria. The magnification should be large enough to

see the details of the bacteria if you want to be able to separate two kinds of bacteria. Then the resolution of

the camera is defined by the size of the details one wants to capture. As we can see, one cannot hide from

expenses on the hardware part of the system. But what is it about the software part? Companies, producing

special hardware, often develop specific software packages (Datacube, Zeiss), which can often cost more

than the hardware.

When research is done for industrial purposes, the company interested in the outcome of that

research will pay for the research and equipment. However, at universities it is not always the case that

monies will be available for equipment and software that could help in various research areas. In many

cases, universities will resort to doing many things manually. Even when appropriate hardware is available,

software can provide some additional functionality, but it is usually more efficient to design something

specifically suited to the particular research task or application. This may sound obvious for people versed

in Computer Science (CS) or Electrical Engineering (EE), however people who need such help are often

not from such departments. In my case, I interacted with the Microbiology Department. They were not

aware that their task of counting bacteria could be easily done via computer. Once aware of such systems

5

and techniques, they have two choices: invite someone to design the system for them or learn on their own

how to design it. Lack of the experience and time issues, causes the first approach to be preferred in most

of the cases.

Once the decision to invite someone to design a recognition system is made, the question that

comes up next is how much does such a system cost. Often companies will take on the task of designing a

system with most of the money being spent on hardware and little being spent on the software side of

things. It is then logical to have a university put systems together so that all aspects of the problem can be

taken into account and keep costs down. Students are typically involved in the projects, but when a student

sees what is a proper approach to the problem, he/she may realize that too much time is required to design

the system, even if the methods to perform recognition are quite simple. The student must take care of

image acquisition, processing and displaying. A good approach is to use a group of students, but then

someone has to manage the project and students will tend to come and go with time possibly making

continuity difficult. The point is that there is no simple, and common way to solve this problem at the

moment.

1.5 What can be done?

A look at different types of imaging systems gives us some insight into how such systems are

designed. But maybe there is a way to simplify the development of the recognition systems. What is this

way? The answer is simple: STANDARDS. Standard means a predefined way of doing things, which

makes it possible to connect parts from different projects seamlessly. In the case when an old standard

cannot provide high enough performance, the old standard is extended or a new one is proposed.

What is ultimately needed is a system, which is: inexpensive, flexible, and extendable with

reusable components. In this thesis I am proposing a methodology of organization for recognition systems

that simplifies the design, implementation, and execution of various recognition research tasks. The

development of a philosophy for the standardization of a "plug and play" library is done which allows for

easy implementation and extension to existing systems.

The proposed approach separates the recognition task into five major steps: Acquisition, Object

Separation, Feature Extraction, Classification and Displaying as shown in Figure 1.1

6

The main source for acquisition is the camera (or cameras), but it could be any device presenting

two-dimensional data. During acquisition the data is introduced into the system. This acquisition can be a

one-image or a continuous sequence of video frames. Regions of interest are detected using an Object

Separation feature. Individual features of these regions are then extracted by Feature Extraction functions.

Under certain conditions subdivision into more regions of interest is necessary and would be performed

using Feature Extraction functions. Once regions and their features have been defined, classification can be

performed in the Classification step. The final result is shown during the Displaying step.

Object
Separation

Acquisition

Feature
Extraction

Classification

Displaying

Figure 1.1 Example of the block diagram of the system organization.

The following Chapter describes the approach used to develop the proposed standard. The

problems encountered and the trade-offs considered are discussed. Chapter 3 provides an overview of an

example implemented specifically for this thesis. Chapter 4 shows the research performed by

Mr. Pawlak [2] implemented using the proposed standard. In Chapter 5 a specific research problem of

counting bacteria is developed and shown. Finally, specifications of the proposed standard are described in

Chapter 6.

7

CHAPTER 2

APPROACH

Described in this chapter are common steps required for many recognition tasks including the way

this separation into tasks is found. Each step is described indicating how it is connected with the rest of the

system. Interfacing between the steps is discussed.

2.1 Starting point

The work of Mr. Pawlak [2] was a starting point for this thesis. Doctors performing research on

Huntington’s disease, study slices of brain’s tissue to find out how many cells of a particular kind are in

this tissue. To date this is done manually (see Chapter 4 for additional details). Mr. Pawlak developed a

method for automating this process by computer. He acquired images of the samples and implemented his

methods in Matlab. These methods were designed to recognize a certain number of cells and then indicate

their type and location in the image. Doctors checked the results and they found accuracy of the methods

sufficient to be helpful in their work.

This thesis began as an implementation of Mr. Pawlak’s research, adding a user friendly Graphical

User Interface (GUI) and some improved methods of the recognition in order to provide the doctors with a

useful tool for their research in Huntington’s disease. Figure 2.1 shows how Mr. Pawlak organized the

recognition process. It shows blocks, which are independently functional as stand-alone units.

8

Acquired data (tiff images)

Segmentation

Features calculation

Polar transform

Fuzzy classification

Result

Figure 2.1 Diagram of recognition process for human brain cell recognition

It was clear that this kind of application would help doctors to perform research on Huntington’s

disease, but also could be used for other similar recognition tasks. Doctors working on other disease need to

recognize other types of cells. This often means that some new methods could be required to recognize the

new types of cells. In order to make this adaptation simple, the designed system should be easily

extendable, in the sense that one can have additional methods along with old ones.

2.2 Plug-Ins

One way to design an extendable system is to use the plug-in concept. A plug-in is a module that

encapsulates certain functionality (see section 3.1 for details). A user indicates to a main program of the

system what plug-ins he/she wants to use. This method allows new functionality to be added into the

program without rebuilding the program itself. The program uses plug-ins by means of a predefined

interface that was developed for this thesis. The main program loads a required plug-in into memory and

finds the location of the required functions. These functions are then called according to their order of

execution and purpose. When the program finishes using the plug-in, plug-in is unloaded from the memory.

It was decided to use the plug-in concept so different methods could be implemented and used when they

are required without changing the main program. This requires that an interface must be developed. The

9

interface includes the definition of the function types with the required parameters. The plug-ins require

information from the main program and this information are passed as arguments to the function.

Often times change of the classification method is required, in order to classify a new cell.

Classification is incorporated into the “Fuzzy classification” block (Figure 2.1). One can easily extend the

system if this block is implemented as a plug-in. It is also possible that addition of new features may help

solve the problem in a better way. The “Feature calculation” block is responsible for available features.

Extension of this block can also be done using the plug-in concept described above.

2.2 Acqusition

In Mr. Pawlak’s research, all images were acquired using the hardware board MaxPci designed by

Datacube. The input to this board was an RS-170A analog composite video signal from a standard RS-

170A camera. The camera was mounted to an Olympus BH-2 microscope and the Datacube Max Vision

digital image processing system was used for acquisition. The Max Vision system is equipped with an 8-bit

analog-digital converter producing 256 intensity levels. An Olympus A100PL 1.30oil objective (type of

objective that uses oil as an immersion media) was used. The camera was placed in the monocular path of

the microscope using a special eyepiece with a magnification of 0.3. Images were saved in BMP format by

the capturing software. BMP images were converted into TIFF format using Photoshop [13].

This method of obtaining data is good when the research datum is small. When non-technical

people (such as doctors) are using the system, they must know how to capture an image, how to save it, and

how to load the appropriate programs. A good method is to acquire images directly fro m the camera into

the program. However, it is possible that higher resolution of acquired images might improve the

performance of recognition. At such a point a new camera with higher resolution can be purchased. In order

to support this, the program must often be rebuilt to support another camera. Furthermore if someone at

another university would like to continue the research, they could have a different camera. In this case the

program must be modified to work with the new camera.

Analyzing the situation one can see that a good solution would be to have an acquisition module

be dedicated to just the acquisition of images. Once such a module is built for a particular camera, everyone

10

with such a camera could use it in their research. If a different camera is required one just needs to write the

acquisition module for this camera and the rest of the system need not necessarily be changed.

In Mr. Pawlak’s thesis, he proposed a way to improve his results by using images of the same

region of the sample captured with different focus distance [2]. Automatic xyz translation stages make this

possible. A control program is required in order to send the proper control signals to the xyz stage. Such a

stage is very expensive and therefore is not widely available. With the plug-in methodology, various system

configurations can be implemented, depending on the available equipment.

2.3 Segmentation

To find cells in the image Mr. Pawlak used a Region Growing algorithm (described in Chapter 4).

Of course there are other methods and algorithms that could be used for this task. For his work he picked

this method and it provided good results, but it would be interesting to test other methods as well. If

segmentation is performed in a separate module, then anyone could test the system with different methods

of segmentation and pick the best-suited one. Segmentation methods also depend on the type of images

acquired by the camera. For example, in the case of color images, different segmentation methods are often

required than for grey scale images. All this indicates that segmentation should be done in a separate

module.

2.4 Displaying

To display the results of processing, the application program must be able to represent the data in a

convenient form for users to interpret. How the data is represented depends on the type of processing

performed and the data visualization desired. One of the tasks required in the analysis of human brain cells

is to count how many cells of a particular type are in the view and what their locations are. This can be

automated, however, it is also required to provide the ability for doctors to visualize this data to check for

the correctness of the performance. This implies that that they should be able to see the captured image and

the labels assigned to the cells.

Once doctors are confident with the results of the program, they could process many data samples

without human intervention to gain statistical data. Thus, doctors do not need (or want) to check each

11

sample processed, but rather store the statistical result or have the printout of the data. The number of

choices implies that displaying should be implemented as a plug-in. This would give maximum flexibility

to the users.

2.5 Transformations

The one block left undefined in Figure 2.1 is the block labeled Polar Transform. I decided to

design previously defined blocks, as plug-ins to the main application, which just connects them together,

transporting appropriate data. However, should Polar Transform block be moved to another module, or

maybe it can be treated as one of the defined blocks?

Let us look at the purpose of this block. It was designed to provide the method of classification

with additional features that could not be extracted directly from the images. Look a little bit closer to the

way features are extracted. Segmentation gives areas of interest and then features are extracted for each

region of interest. There are two ways to perform this operation: 1) Pick the area of interest and extract all

features; 2) Pick a feature and extract it for all areas of interest. I suggested that Polar Transformation

should be treated as a usual feature that would save the transformed information. And this works properly

for both cases, described above, i.e. features are extracted correctly.

2.6 Interfacing

It is obvious that all plug-ins, which could be built by different people, should have a common

interface and use common data structures. One way to do this is to design a library, which would be used

by all developers. The next question is, what information each of the plug-ins require for a correct

performance? This information would show what has to be included into the library. Let us go step by step

trying to understand what each type of the module does. We will define input and output data for each

module adding more structures or changing them as we go along. The connection of two modules is shown

in Figure 2.2

12

Module 1

Module 2

Input of Module 1

Output of Module 1=
Input of Module 2

.

.

.

Module N

Output of Module 2=
Input of Module 3

Output of Module N-1=
Input of Module N

Output of Module N

Figure 2.2 Module connection
2.6.1 Acquisition

It looks like the input data for the acquisition module should be a command to start the acquisition

and some parameters for the acquisition itself (i.e. source of the acquisition if there is more then one

camera; camera setup). This data could be represented by a set of variables with values. Which means that

the first thing to have is a list of variable names with their values. The name of a variable is a set of ASCII

(American Standard Code for Information Interchange) characters (i.e. a string), while the value could be a

number or a string. Any number can be represented as a sequence of ASCII characters, so we need a list of

pairs of strings: value – name.

The acquisition module has to acquire data and store it in the memory. We are working with the

image data, which is a two-dimensional array of numbers or simply: an image. The images could have

different size and different color depth. But the next question is if only one image is always acquired. The

processing could require data from a previous image or, as in the case with cell recognition, images

captured with different focal distances. It means that in general, acquisition should return a list of images.

13

2.6.2 Segmentation

Input data for this module is the output data of the acquisition module, i.e. the list of images. And

of course, the segmentation could have its own parameters given by the list of variables as it was given for

the acquisition module. The result of segmentation is a set of regions of interest. Each region of interest

may be characterized by its bounding rectangle. Thus, the output of this module could be a list of bounding

rectangles. It was decided to use this description for the region of interest.

2.6.3 Features

The output of the segmentation module is an input for the feature extraction module. We know

that we could have a number of features and I decided that each module designed to extract a particular

feature should go through the list of the bounding rectangles and extract information. We know that the

bounding rectangles define the location of the region of interest in the acquired images. It means that

feature extraction methods should be able to access the acquired images as well.

The output of the feature extraction method is a feature value assigned to a particular region of

interest. It could be different for each region and there could be more then one value. To make it easier, let

us describe the region of interest, not only with a bounding rectangle, but, also with a list of variables.

Sometimes a transformation of the original image for the region of interest is required, so other plug-ins

could extract some features. Let us add the transformation image to the description of the region of interest.

2.6.4 Classification

The classification is performed for each region of interest based on the values found in the list of

variables for each feature. Also classification should have some prior information, we can call it a database,

because it should have information about required features and some decision boundaries for all features.

Output data is a decision that labels the regions of interest. The label could be added to the list of variables

for each region.

2.6.5 Displaying

This module should have access to all data acquired and calculated during the performance.

Depending on the requirements not all of the data needs to be displayed, but for the purpose of verifying

and debugging all data should be accessible.

14

The output of this module depends on the task specification. It could be interactive displaying (as

in my case, the program shows what were the decisions and allows browsing through the found region of

interests) or just a notification about the decisions made during classification.

2.7 Modes of operation

The designed system should help a scientist to perform some time -consuming operations. Usually

only the result of the whole procedure is required (like data collection or statistical distributions). It means

that it is desired to have a system that performs the operations during some period of time without human

interaction and produces the ready-to-use result. This mode of operation would be useful for testing

purposes, when the system has to be checked for consistency of the performance.

On the other hand, if the plug-ins have parameters, it is not always obvious what settings would

result in the best performance. In this case, there is a need to have an ability to go step by step through the

operation of the whole system adjusting parameters of each part.

Analyzing these statements I came up with two modes of operation: Normal Mode and Research

Mode. When in Research Mode of operation a user is able to set up each module and observe the effect

produced by this module with those parameters. If the user is satisfied, these parameters should be used to

make the recognition, otherwise the user should be able to change parameters and see the result of the

change. It is also useful to see how different parts of the system work.

Once all parameters are set, the user should be able supply different data as input and see what the

results are. This is the Normal Mode of operation.

2.8 Abstracting

The proposed sequence of the steps and their interfacing was designed just for implementing the

methods proposed by Mr. Pawlak. But comparing this design with the designs mentioned in the textbook

for pattern recognition by R. Duda, P. Hart and D. Stork [3], I found out that the proposed design could be

used for many other recognition tasks. If there is a need to perform the same operations on each frame, then

continues acquisition could be done. The only thing to add is a loop, so the acquisition is called again after

15

the displaying. It will work if the processing has sufficient speed otherwise some data could be lost. But it

is a question of implementation and available hardware.

If the data structures from one loop of the acquisition are used for the next iteration, then a

feedback is possible and a decision made during the previous loop can affect the procedure of the next one.

I decided to create one data structure, which has all the required information for the system. The address of

this structure is given to all plug-ins. The plug-in takes information that is required for its performance

only. But in this way it could have access to any information, which makes the system very flexible. The

same structure is used for the next acquisition step and control parameters could be changed in the previous

step.

To test the described philosophy, the designed library was also used to solve the problem with

bacteria counting (Chapter 5). Such points as porting into other operating systems and automatic memory

management were considered during the design.

16

CHAPTER 3

IMPLEMENTATION EXAMPLE

A complete system should be created in order to test the conclusions of Chapter 2. The following

chapter describes how the system can be constructed in order to support the ideas of plug-ins and use of a

standardized library. I ported the automatic human brain cell recognition application and designed a

bacteria counting application using the proposed philosophy to test the library. Cells and bacteria can be

called micro objects because of their small size, and I named the system: Automatic Micro Object

Recognition System (AMORS).

Different applications for this system differ in a configuration file that stores the parameters of the

system.

3.1 Main application

In order to have an easy-to-use application, the application should have a user-friendly interface.

Microsoft Windows 2000 and Visual C++ 6.0 were used to create and test the application. The Standard

Template Library included into the ANSI (American National Standards Institute) standard for C/C++ was

used in the design of the standardized library. That results in platform independence, so the library can be

used under any operating system. The designed library was used to build the main program and plug-ins for

the system. Plug-ins were implemented as DLLs (Dynamic-Link Library). Figure 3.1 shows the block

diagram of the main application.

17

Main program

Configuration file Plug-ins Modes

Setup Information, functions Execution

 ExecutionSetup, exectuon

Figure 3.1 Main application organization

The main program is used to create (or modify) a configuration file with information about the

plug-ins and their parameters to be executed. The main program also takes responsibility of loading plug-

ins into memory and releasing them. In this way the library, which contains interface objects is free of

platform dependent routines. The main program gives a user the ability to execute the system in Normal or

Research Mode (see section 3.3), and stop the system during the performance.

3.2 System organization

Figure 3.2 shows the internals of the system. Explanations for each block are as follows.

Acquisition module – this block is responsible for acquiring data from the source (microscope) and

converting it to the format described by the interface definitions. This module interfaces hardware with the

rest of the system;

Camera manager – obtains the image data from the camera and transmits it to the acquisition

manager;

XYZ stage manager – controls the position of the specimen under the microscope (depending on

the equipment Z will be changed or the focus of the mic roscope will be changed in order to get other

objects into focus);

Acquisition manager – controls the Camera manager and XYZ stage manager to obtain a set of

frames. Once the frames are acquired, the manager transfers them to the Processing module;

Processing module – this block incorporates all routines required to perform transformation and

classification of the objects;

Object separation– finds and separates different objects in the frames using the Object separation

plug-ins;

18

Object separation plug-in – methods to separate the objects within frames;

Feature extraction – extracts features from each object using Feature extraction plug-ins;

Feature extraction plug-ins – methods for transformations and detection of the different features;

Classification – compare features for each object with Database to make a decision about the

object label;

Database – contains the information about objects names and features that allows connecting the

label and a particular object in the frame;

Display manager – displays the result of the analysis and a user can set some parameters using this

manager, for the system to use them during the next iteration;

Processing module

Acqusition module

Hardware

XYZ stage

XYZ stage
manager

Camera
manager

Camera

Microscope

Feature
extraction(FE)

Classification

Acquisition
manager

Set of Frames to be processed

Display
manager

Object
separation

Object Separation
plug-in

FE Plug-in 1
…
….

FE Plug-in N

Database

Figure 3.2 Block diagram of plug-in connections

19

3.3 Normal and Research Modes

When in Normal Mode (Figure 3.3), the system acquires data using the acquisition plug-in that

composes data into frames. Each frame then undergoes a processing using the set of plug-ins defined by the

current configuration. The result is directed to the display module where, depending on the requirements of

the task, the program will wait for user interaction or continue with repeating the whole process, until some

criteria are met.

Data
acquisition

Processing
block

Result
displaying

Frames Result

Feedback (user input, automatic adjustments)

Figure 3.3 Block diagram for Normal Mode

When in Research Mode (Figure 3.4), the system interacts with the user allowing the user to adjust

parameters for each step of the processing. Once all plug-ins are configured, the configuration file reflects

the changes. This configuration file is then used for Normal Mode operation.

Data
acquisition

Processing
block

Result
displaying

Frames
User feedback

User feedback
Results

New
configuration

Figure 3.4 Block diagram for Research Mode

3.4 AMORS user interface

Users should have an access to the functionality of the system and the usual way to do so is to

design a GUI (Graphical User Interface). Figure 3.5 shows the main window of AMORS. This window

allows user to configure the system and perform recognition.

20

Figure 3.5 Main window of AMORS

Explanation of controls:

1. Configure button allows user to configure the plug-ins for the current configuration file (see item 6);

2. Launch button allows user to launch the system to perform the task according to the current

configuration file in Normal Mode (see Chapter 2 Interface description for more information);

3. Research Mode button allows a user to enter the Research Mode (see Chapter 2 Interface description

for more information). Step by step setup of each plug-in with displaying the results of the setup is

performed;

4. Display last result button allows a user to see the result obtained after using the Launch button;

5. Progress bar shows the progress reported by the system and plug-ins;

6. Configuration file name shows the name of the configuration file used to guide the system work;

7. Browse for configuration file button launches file -open dialog box, where user can pick the

configuration file;

8. Log messages shows messages reported by the system or the plug-ins;

9. Close button closes the window and exits the program.

When “Launch config” or “Research Mode” buttons are pressed, the program reads the

configuration file, loads plug-in dlls and executes appropriate function for the Normal or Research Mode.

For this time user has to wait for the end of the operation to be able to use this window, except that user can

abort the operation. Figure 3.6 shows the appearance of the window during the performance.

21

Figure 3.6 Main window during the execution

To configure the system, the user is provided with the dialog box (Figure 3.7), where it is possible

to choose plug-ins and set up their parameters.

Figure 3.7 Configuration dialog box

Explanation of controls:

1. Name of the Acquisition plug-in (press arrow on the right to see the list of all available Acquisition

plug-ins);

22

2. Name of the Object Separation plug-in (press arrow on the right to see the list of all available Object

Separation plug-ins);

3. All available Feature plug-ins;

4. Attach button attaches the selected Feature plug-in to the configuration;

5. Detach button removes the selected Feature plug-in from the configuration;

6. Feature plug-ins, which will be used in the system;

7. Name of the Database plug-in (press arrow on the right to see the list of all available Database plug-

ins);

8. Name of the Display plug-in (press arrow on the right to see the list of all available Display plug-ins);

9. Number of scans to perform during the execution. System will loop for this number of execution

giving a number of iteration to the Acquisition plug-in. If 0 is used, loop will be infinite, so only user

interaction (pressing the Abort button) will stop it;

10. Ok button – when all plug-ins are chosen, press this button to launch setup for each individual plug-in;

11. Cancel button – if you do not want to save any changes use this button.

Name of the plug-in consists of two parts: unique identifier of plug-in and information returned by

GetInfo function from the plug-in separated by [space colon space] sequence.

Example:

1 : Simple Display ver 0.1 (Debug)

where the unique identifier is “1” and the description returned by the plug-in is “Simple Display

ver 0.1 (Debug)”. Unique identifier is needed in the case if two p lug-ins would return the same information.

But in most cases user could ignore this number.

The order of Feature plug-ins is important for execution, so in the list of attached plug-ins the

order number is added to the name of plug-in following by the dash. Plug-in is attached to the end of the

list and if you want to have a particular sequence you should attach the plug-ins in the desired order. If you

make a mistake, detach the plug-in and repeat the operation.

23

3.5 General purpose plug-ins

Mr. Pawlak used TIFF images in his research. To compare the results of my system and his

results, I had to use the same data. I have created special acquisition plug-in that reads TIFF image files.

Also I have designed SimpleDisplay plug-in to see the results of performance. Even though these plug-ins

were designed for human brain cell recognition system, they are very versatile and can be used in a big

variety of applications at least at the beginning stage. These plug-ins are described in Appendix D.

24

CHAPTER 4

AUTOMATIC HUMAN BRAIN CELL RECOGNITION

This chapter describes the application created using the research of Mr. Pawlak [2], who was a

former graduate student in the ECE department at UNH. His thesis was a research on the possibility of

automatic human brain cell recognition to provide help with the pathological study of Huntington's Disease

(HD). His research was performed using Matlab, where algorithms were coded. This code was used as the

basis for the modules of AMORS to demonstrate how such a task could be performed using the proposed

system. Modifications of the original research are discussed. In this chapter I have paraphrased portions

from the work of Mr. Pawlak [2] to give a brief explanation of the problem. Appendix D contains the

detailed information about the plug-ins discussed in this chapter.

4.1 Problem statement

One of the first regions of the brain to be affected by HD is the Caudate Nucleus, thus the images

contained in this thesis are primarily from that region. Neuropathological studies of HD show that as the

disease progresses there are decreased neuronal and increased oligodendroglial densities in the Caudate

Nucleus [2]. One primary method used to perform the above mentioned pathological study is to observe

brain tissue under a microscope, which has a camera lucida apparatus. This device acts as a prism, and can

be used to superimpose tracing paper on to the slide. Cells are then traced by hand, and identified by an

expert (such as Dr. Vonsattel). Clearly, this process is very labor intensive, and can be made faster with the

benefit of computers and digital image processing techniques. It is surprising however, that the practice of

creating hand sketches during microscopic studies is rather common in modern medical research [2].

Brain tissue found in the Caudate Nucleus primarily consists of these cell types: astrocytes,

endothelial, microgila, neurons, and oligodendrocytes. Astrocytes are approximately 10 microns in

25

diameter, have a grainy texture, and usually are oval or bean shaped. Endothelial cells are blood cells

usually found as part of capillary vessels. Microgila cells are rod like or cigar shape in appearance with a

process (a faint stringy structure) at each pole (end) and are not associated with blood vessels. Neurons are

irregular in shape, and usually are grainy in texture. They are commonly 20 to 30 microns in diameter, but

sometimes appear smaller because microscope tissue sections are often cut to a thickness of approximately

7 microns. It is not unusual to observe the dark nucleus of the neuron, which is approximately 1 to 2

microns in diameter. Oligodendrocytes are very dark and circular in nature, much like a dot of ink. They

are usually 5 to 7 microns in diameter. Sample brain tissue may be found in Figure 4.1 (a) and (b) where an

example of each of the cell types is clearly identified.

(a)

(b)

Figure 4.1 Examples of cells (a) - Microgila and Endothelial; (b) - Neuron, Astrocyte and
Oligodendrocyte

Automation of the cell identification process offers several advantages in addition to reducing the

labor involved. Having microscope images appear on a video monitor instead of having to look through the

eyepiece greatly reduces eye strain. The automatic computer identification of regions of interest gives the

by-product of a computer database, which can be recalled rapidly by researchers throughout the world.

Databases of this nature will also record statistics about the cells such as their size and shape factors. Often

the experts will have different opinions as to the classification of the different cell types. Formation of a

large database will allow researchers to discuss the differences and perhaps reach a better understanding of

the roles of the various cell types.

26

4.2 Image segmentation

“Segmentation of an image entails the division or separation of the image into regions of similar

attribute” [4]. “The ultimate aim in a large number of image processing applications is to extract important

features from the image data, from which a description, interpretation, or understanding of the scene can be

provided by the machine” [5]. In brief, segmentation determines the regions of interest (ROIs) in an image.

This does not mean that the segmentor will try to determine the type (classify) of the region, but merely

determine the pixels in an image, which belong to the same item. Specifically, in the application of

automatic human brain cell recognition, it is the segmentor’s function to find all the brain cells in the

image, and to identify them with unique “labels” (i.e. Region 1, Region 2, …).

Over the years, the digital image processing community has developed several segmentation

methods, many of them ad hoc. Four of the most common methods are: 1) amplitude thresholding, 2)

texture segmentation, 3) template matching, and 4) region-growing segmentation. In the first method,

amplitude thresholding or window slicing, the image may be arbitrarily subjected to a fixed number of

thresholds. Pixels, which fall between an upper and lower threshold, and are in close spatial proximity, are

considered to be the same region. Variations of this method will take a histogram of the image and key on

peaks or valleys of the histogram to set thresholds. This method was not used because it can often lead to

regions, which produce concentric circles when trying to segment the cells. In the second method, texture

segmentation, a coarseness metric is computed on the image, and changes in this metric are used to

determine boundaries. Texture segmentation is generally considered to be a challenging problem, and was

not used because the textures of neurons are considerably different than those of oligodendrocytes. The

third method, template-matching segmentation, involves analyzing an image to look for matches against a

list of templates. The large variation in brain cell shapes and sizes makes this method impractical. In the

fourth method, region-growing segmentation, items of similar amplitude are located based on a seed pixel.

Pixels near the seed are analyzed to determine if they are part of the same region. Generally, region-

growing segmentation is not as prone to the concentric circle problem as the window slicing approach. The

region-growing method is explained in detail below.

The region-growing process used in this thesis is based on the concept of computer stacks [6].

Stacks operate in much the same way as a stack of plates in a cafeteria, that is to say they are a last in - first

27

out buffer. When pixels of interest are discovered, the neighboring pixels are analyzed to see if they are

part of the same region. If so, they are placed on the stack for later processing. During the processing, the

stack will initially grow, go through a phase where it will both grow and shrink, and will end by shrinking

completely to an empty buffer.

Three arrays are used during region-growing segmentation. The first array is the grayscale image

itself, (see Figure 4.2 (a) as an example). The second array indicates if the pixel of interest has already been

processed. The third array consists of cell labels. At the end of segmentation, the input image (first array) is

transformed from intensity pixels to labeled regions (third array). Figure 4.2 (b) illustrates the transformed

image of Figure 4.2 (a). The transformed image shows only the perimeter pixels of all of the regions. Using

this method, the boundaries of all ROIs can easily be seen. Pixels inside of the boundaries are all assigned

the same label. In addition, the method clearly illustrates the cases where regions are adjacent to (or

associated with) each other. This frequently occurs with neurons because the cells are close to the

background intensity levels of the slide and often have local regions of different gray levels.

(a)

(b)

Figure 4.2 (a) original grayscale image; (b) transformed image

Processing begins by selecting a threshold used to analyze the image. Next, the image is raster-

scanned (column by column, then row by row) to see if a pixel crosses the trigger threshold and does not

already belong to a region. If it has met these conditions, the region-growing algorithm listed in Figure 4.3

is used with the trigger pixel designated as the seed value. If the resultant region is not large enough, the

region is not used, and the processing and cell label arrays are properly reset.

28

top:
 do i_loop seed_i-1 to seed_i+1
 do j_loop seed_j-1 to seed_j+1
 if not processed
 if input in threshold range
 push i,j on to stack
 end if in threshold range
 set pixel in processing array
 put pixel in region pixels
 end if not processed
 end j_loop
 end i_loop

if anything on stack
 pop stack to change seed
 go to top
end if anything on stack

Figure 4.3 Region-Growing Algorithm

This method used by Mr. Pawlak was implemented in the RegGrow plug-in (Object Separation

type). Mr. Pawlak found this method more suitable and robust, than other methods (contour method, for

instance). But the results still required a human interaction; otherwise some cells will be treated as one cell

if they are close to each other. Without human interaction 6.7% (on average) of cells in the view will be

segmented incorrectly. Also one has to take into account that on average 50% of cells in the view is clutter

or could not be classified even by human. That means that error due unattended segmentation is less then

5% (on average half of improperly segmented cells are clutter), so I decided to leave the automatic

segmentation without human interaction.

4.3 Polar transform

The polar transformation used in this thesis is illustrated in Figure 4.4. It is simply a remapping of

the Cartesian coordinate input image plane to a polar coordinate-mapped image plane. The most basic

transformation example is that of a circle, in which the polar mapping results in a vertical line. Lines, which

extend radially from the origin, result in horizontal lines. If an object is rotated, the polar mapping of the

object is shifted vertically from the original.

29

Polar mapping can be very useful in applications dealing with circular objects such as cells. In

addition, the polar mapping provides very good insight into the information contained in the edges of the

items of interest. It was this property that was tested for its robustness in determining if some of the cell

types had thick membranes. If so, the information would have been used in the cell classification process.

At the University of New Hampshire, polar mapping has been used for such diverse applications as optical

character recognition and image compression [7,8]. In the case of the optical character recognizer, the edge

information was used as a feature vector. In the image compression case, polar mapping was used to

preserve high-resolution information in the field of interest while reducing data at the periphery.

Figure 4.4. Polar Transform Mapping diagram

The Polar transform was implemented in the Polar plug-in (Feature type).

4.4 Feature plug-ins

Mr. Pawlak [2] suggested a set of features which could be used to classify cells. He described

them in his work and implemented them in Matlab. I have implemented his methods into the

pawlak_features plug-in (Feature type). These features include: central moments, area, roundness,

distinctness, standard deviation, centroids, elongation, eccentricity, spread, orientation, minimum radius,

maximum radius, mean value, entropy and some features from the polar transformed image.

Matlab has a special way of operating with data loaded from TIFF files (usually all values are

increased by 1, so there is no value 0), and some functions use different formulas, which return slightly

different results from what I was using in my plug-ins. Also without human refining of segmentation (used

30

my Mr. Pawlak) the boundaries of cells are slightly different. As a result, parameters calculated by my

plug-in and those calculated in Matlab are different by less then 5%. It is just a different way of treating the

data, so this fact does not affect the precision of values and the relation between different parameters. It

was decided not to spend time trying to change my code to have exact values as given by Matlab, even

though it is obviously possible.

The only big difference in parameters was found for the calculation of entropy. I checked the

formulas given for this feature and the way it was calculated in Matlab. I found that Mr. Pawlak did not

scale the data properly. It is a scaling factor so it did not change the effect of the feature. But I decided to

leave a correct formula in my plug-in. As a result I had to change the membership function for the entropy.

4.5 Fuzzy Logic

To some, the term “Fuzzy Logic” conjures up the concept of an oxymoron. However, it is one of

the largest growing avenues in machine intelligence. Fuzzy Logic systems are developed using linguistic

terms and allow for a pattern identification system to be designed using small training sets. We like to think

of ourselves as very precise, and calculating, when in fact one of our greatest strengths as human beings is

the ability to make abstract generalizations using a few adjectives and nouns. How big is a large cat? The

human mind does not approach this problem by thinking. “Garfield weighs 9.857 kilograms. Cats greater

than 7.23 kilograms are large cats. Therefore, Garfield is a large cat.” The mind does not place Garfield

into to the set of large cats using such a precise and sharp threshold. Rather, the definition of the set of large

cats has a fuzzy boundary. A cat, which weighs 6 kilograms, has some membership in the set of large cats,

but not as much as a cat which weighs 8 kilograms. It is evident that the mind describes associations or

membership in a set in vague terms. Fuzzy Logic parallels this concept by defining “membership

functions” which assign a grade of membership ranging between zero and one. In the case of the 8

kilogram cat the membership value may be 0.95, whereas the 6 kilogram cat may be given a membership

value of 0.45.

Membership functions are a mapping of a single linguistic variable from a parameter space to a

linguistic space. In the Garfield example, the weight (parameter) was mapped to a large size (linguistic)

space. Often these membership functions are simple functions such as ramps or triangles, but they can be as

31

complicated as the designer chooses. In some systems it may be desirable to have multiple size categories

such as small, medium, and large. One simply defines three membership functions which all use the same

input parameter.

Usually more than one feature characterizes the object of interest. Now the combination of these

features defines the object. There could be more then one combination for the same object. Let us call these

combinations – rules. In the example with the cat our rule is simple if size is large then cat is big. If we say

that a large cat is a cat with large size and small or medium length tail, then the first rules is: if size is large

and length of the tail is small it is a big cat and the second rule is: if size is large and length of the tail is

medium cat is big.

A special database plug-in, IniDB, was created to support this philosophy. The database for this

plug-in is a configuration file which has membership functions for parameters. Then the rules are defined,

and objects with the names and rules are used to make the decisions. This plug-in is described in

Appendix D.

4.6 Performance

Because of the difference in feature calculations and the changed membership functions, only the

final results could be compared. Figure 4.5 shows the configuration of the plug-ins in AMORS.

Because of automatic segmentation less then 5% of the cells were ignored. I had to modify the

membership function for the entropy. It is very time-consuming to define the membership functions that

would match the rules described by Mr. Pawlak. After changing the membership function and the rules, I

achieved 70% of recognition (that is 5% less than with human interaction in the original research). I believe

that with more adjusting of the membership functions a better performance can be achieved. The main goal

was to illustrate how using the philosophy of this thesis one can solve such a recognition task, rather than to

obtain a very high percentage of recognition for this particular classification scheme. Also using self-

organized maps was the next step to the more precise recognition. Their performance is described later.

Keeping all that in mind I decided to leave fuzzy-logic membership functions with this percentage of

recognition.

32

Figure 4.5 The configuration of the application for AMORS.

On the other hand, the main advantages of the implemented system are the easy-to-use interface,

speed and less human interaction. I did not perform optimization on the code for the calculations of features

and region growing method. I wanted them to be as close to the Matlab code as possible (for easier

debugging). But the implemented system works 2.5 times faster then Matlab code. This was expected,

because Matlab interprets the code, while in AMORS everything is compiled.

The next step was to improve the methods. Mr. Pawlak proposed a couple of improvements to

make his methods more robust and precise. The first one is to make three-dimensional processing and

another one is to use self-organizing maps instead of membership functions that are hard to define. The

following sections describe these improvements.

4.7 3D acquisition

Three-dimensional digital image processing techniques for automatic human brain cell

identification offer the largest performance accuracy gains for the techniques discussed in the original work

of Mr. Pawlak [2]. The primary limiting factor that anyone experienced when marking the cell types was

the inability to adjust the focus of the slide. The depth of field for the microscope's objective used in the

image capture process was less then one micron. Selection of the objective is a trade off between the

33

resolution and depth of field of the imaged tissue. Medical experts are not typically concerned with the

depth of field because they will simply adjust the focus if necessary. In an attempt to remedy the focus

adjustment problem, University of New Hampshire graduate student John Canfield recorded "stacks" of

microscope images [2]. This “stack” is the set of images for the same view with different focus.

There are things that could be done to improve recognition using stack images. The first one is to

recognize a cell at each image and then decide the label by voting. Or the image where the cell has the

sharpest edges could be used for recognition. Also some additional information could be extracted, like

position of blood vessels. Then this additional information could be used for recognition [2].

I decided to show that AMORS is suitable for such tasks, by implementing a decision scheme by

voting. No additional plug-ins were required to do so. The DummyAcq plug-in is capable of loading

multiple images into memory, imitating the result of the acquisition with different focus planes. Then each

image is treated like it was done in the original research. IniDB asks a user if the sequence should be

treated as a 3D stack. And based on the labeling for each cell, it assigns the label with the highest vote for

all layers. There was not enough data to really test the efficiency of this modification, because only one

“stack” was captured. But the main idea was to show that the system could handle this approach.

4.8 SOM database

Fuzzy logic membership functions documented in this thesis were developed in an ad hoc fashion.

As such, they may not yield optimal classification accuracy. It is possible that alternate membership

functions could be developed which would yield better results. Two factors should be considered in the

development of new membership functions: a systematic approach, and the size of the database. Kohonen

Self-Organizing Map (SOM) represents a more systematic approach to the development of membership

functions [9]. These maps can be used to systematically partit ion a multi-dimensional decision space, and

thus assist in the automatic definition of the membership functions. Any adjustments to the membership

functions also have to account for the size of the database. If the database is small (which is the case of this

thesis), one must be very careful not to “tune” the membership functions to the available data.

34

4.8.1 Self-organized maps

The SOM here defines a mapping from the input data space Rn onto a regular two-dimensional

array of nodes. With every node i, a parametric reference vector mi in Rn is associated. The lattice type of

the array can be defined as rectangular or hexagonal the latter is more effective for visual display. An input

vector x in Rn is compared with the mi, and the best match is defined as "response": the input is thus

mapped onto this location.

The array and the location of the response (image of input) on it are supposed to be presented as a

graphic display. For a more insightful analysis, each component plane of the array (the numerical values of

the corresponding components of the mi vectors) may also be displayed separately in the same format as the

array, using a gray scale to illustrate the values of the components.

One might say that the SOM is a "nonlinear projection" of the probability density function of the

high-dimensional input data onto the two-dimensional display. Let x in Rn be an input data vector. It may

be compared with all the mi in any metric; in practical applications, the smallest of the Euclidean distances

||x – mi || is usually made to define the best-matching node, signified by the subscript c:

}min{ ic mxmx −=− or }min{arg imxc −= (Equation 1)

Thus x is mapped onto the node c relative to the parameter values mi.

An "optimal" mapping would be one that maps the probability density function p(x) in the most

"faithful" fashion, trying to preserve at least the local structures of p(x). (You might think of p(x) as a

flower that is pressed!) Definition of such mi values, however, is far from trivial; a number of people have

tried to define them as optima of some objective (energy) function [9]. In this work I used the stochastic-

approximation-type derivation [9] that defines the original form of the SOM learning procedure.

4.8.2 Learning

During learning, those nodes that are topographically close in the array up to a certain distance

will activate each other to learn from the same input. Useful values of the mi can be found as convergence

limits of the following learning process, whereby the initial values of the mi(0) can be arbitrary, e.g.,

random:

)]()([)()()1(tmtxthtmtm iciii −⋅+=+

35

where t is an integer, the discrete-time coordinate, and hci(t) is the so-called neighborhood kernel;

it is a function defined over the lattice points. Usually hci(t) = h(||rc – ri||; t), where rc∈R2 and ri∈R2 are the

radius vectors of nodes c and i, respectively, in the array. With increasing ||rc – ri||, hci goes to 0. The

average width and form of hci defines the "stiffness" of the "elastic surface" to be fitted to the data points.

Notice that it is usually not desirable to describe the exact form of p(x), especially if x is very-high-

dimensional; it is more important to be able to automatically find those dimensions and domains in the

signal space where x has significant amounts of sample values!

In this research two options for the definition of hci(t) are available. The simpler of them refers to a

neighborhood set of array points around node c. Let this index set be denoted Nc (notice that we can define

Nc = Nc(t) as a function of time), whereby hci = α(t) if i∈Nc and hci= 0 if i∉Nc, where α(t) is some

monotonically decreasing function of time (0 < α(t) < 1).This kind of kernel is nicknamed "bubble",

because it relates to certain activity "bubbles" in laterally connected neural networks.

Another widely applied neighborhood kernel can be written in terms of the Gaussian function,

⋅
−

−⋅=
)(2

exp)(2

2

t
rr

th ic
ci σ

α

where α(t) is another scalar-valued "learning rate", and the parameter σ(t) defines the width of the

kernel; the latter corresponds to the radius of Nc above. Both α(t) and σ(t) are some monotonically

decreasing functions of time, and their exact forms are not critical; they could thus be selected linear.

The next step is calibration of the map, in order to be able to locate images of different input data

items on it. In the practical applications for which such maps are intended, it may be usually self-evident

from daily routines how a particular input data set ought to be interpreted. By inputting a number of typical,

manually analyzed data sets and looking where the best matches on the map according to Equation 1 lie,

the map or at least a subset of its nodes can be labeled to delineate a "coordinate system" or at least a set of

characteristic reference points on it according to their manual interpretation. Since this mapping is assumed

to be continuous along some hypothetical "elastic surface", it may be self-evident how the unknown data

are interpreted by means of interpolation and extrapolation with respect to these calibrated points.

36

4.8.3 Example

Let us look at the simple example to understand how self-organizing map works. Consider a

recognition problem, where one has to separate three types of vegetables: cucumbers, tomatos and

watermelons. A picture of each vegetable is made using the same scale. Somehow the program locates the

vegetable in the image and finds the area occupied by the vegetable and the maximum distance between

two perimeter points of the vegetable (Figure 4.6).

Cucumber

Maximum distance

Tomato

Maximum distance

Watermelon

Maximum distance

Figure 4.6 Illustration of the maxi mum distance.

These parameters are used as the separation parameters. We know before hand that on average a

watermelon is round and is bigger then a tomato, which is round as well, while a cucumber has the area

close to the area of a tomato but the maximu m distance close to the watermelon. This is shown in

Figure 4.7.

Area

M
ax

im
um

 d
is

ta
nc

e

Tomato

Cucumber Watermelon

Samples

Figure 4.7 The distribution of input samples

37

One can see that these three classes are easily separated, which makes it easier to check the results.

Now let us look how self-organizing maps can handle this situation. Figure 4.8 (a) shows nodes of the map

with size 5x4 using hexagonal lattice type. Nodes were randomly placed to form a uniform distribution as

shown in Figure 4.8 (b).

0,0 4,03,02,01,0

0,1 4,13,12,11,1

0,2 4,23,22,21,2

0,3 4,33,32,31,3

(a)

Area

M
a

xi
m

u
m

 d
is

ta
n

ce

0,0 4,03,0

2,0

1,0

0,1 4,1

3,1

2,1

1,1

0,2

4,2

3,2

2,2

1,2

0,3

4,3

3,3

2,3

1,3

 (b)

Figure 4.8 (a) map with the size 5x4 (b) randomly initialized map in the sample space

During the training distances between each node and a training sample is calculated. The closest to

the sample nodes are moved towards the location of the sample. Figure 4.9 shows the trained map after a

number of itterations. Training samples are shown as the black dots.

38

Area

M
a

xi
m

u
m

 d
is

ta
n

ce

0,0 4,03,0

2,0

1,0

0,1

4,1

3,1

2,1

1,1

0,2

4,2
3,2

2,2

1,2

0,3

4,3

3,3

2,3
1,3

Figure 4.9 The map after training

This is a very simple two-dimensional case, where it is very easy to show the organization of the

map. But when the dimensionality of the problem is more then 3, there is no direct visual representation of

the map in the sample space. But even if each node is represented as a multidimensional vector, all nodes

are organized in a two-dimensional array as shown in Figure 4.10

0,0 4,03,02,01,0

0,1 4,13,12,11,1

0,2 4,23,22,21,2

0,3 4,33,32,31,3

Figure 4.10 Representation of the map

Once the map is organized and the nodes are labeled, a user can see the result as shown in Figure

4.11, where C stands for cucumber, T – for tomato and W for watermelon. Nodes (4,3) and (3,3) were too

far from any sample and left unlabeled, while the rest of nodes were labeled with the labels of the names

39

defined for the samples. When a new sample is acquired, the distance between all nodes and the sample is

calculated and this sample is assigned the label of the closest node.

C W

W

TT

C

C

W

WW

W

W

C

C

T

TT T

Figure 4.11 Labeled map representation

4.8.4 Implementation

I used “The Self--Organizing Map” Program Package Version 3.1 designed by T. Kohonen, J.

Hynninen, J. Kanga, J. Laaksonen [10] in order to make the classification. This package defines 4 steps:

initializing map, training map, error evaluation and monitoring. Different functions take care of each step.

Initializing creates the map of a given size with uniformly distributed nodes. During the training

nodes are shifted to cover clusters of input data. Labeling is used to assign names for the nodes. The map is

composed from a finite number of nodes and because of that the input vector does not match an exact node;

instead the closest match is assigned. The average difference between the input vector and the best-match

vector is the quantization error. Monitoring is when actual decision is made, a label of the best-matching

node is assigned for each input sample.

I wanted to show one more way of extending the system. The SOM software package was

compiled into 4 separate files, one for each step. Each executable file takes parameters and data from a

given file and outputs the result into another file. Then I created the SOMDB Database plug-in, which

creates input data files, executes each step and reads the output files. Such approach allows one to modify

the algorithm used for each step without changing the plug-in, as long as the parameters and the data file

format stays the same. The goal of such an approach is to create a GUI (implemented in a plug-in), which

may stay the same. The plug-in and program parameters are described in Appendix D.

There are two modes of operation for this plug-in. The first one is the “data collection” step and

the second one is “monitoring”. During the “data collection” step the data file for the map training is

40

created. The plug-in asks a user to label known cells, so this information can be used for the training and

labeling. Once the user supplied all the information it is saved. This information is helpful when there is a

need to repeat the same operation but with different training parameters. When all information is gathered,

the map is initialized and trained. The quantization error is calculated and shown.

During the “monitoring” step the program uses a trained map to assign labels.

4.8.5 Results

Disadvantage of using membership functions was the problem of their definition. Using SOM

solves this problem. In addition, it allows one to analyze what features are beneficial to give more

separation of the classes. Mr. Pawlak used five features for cell separation: area, distinctness, entropy,

roundness and maximum radius. Figure 4.13 shows the representation of how these features separate cells.

The map was constructed as 12 by 8 grid of nodes. After training the quantization error was 6.06.

Figure 4.12 shows the parameters used for training of all maps shown below.

Name\Step Ordering step Fine tuning
Number of iterations 1,000 10,000
Learning rate 0.05 0.01
Radius of training area 10 3

Figure 4.12 Training parameters for the SOM

Abbreviations used in the following figures are N for Neuron cells, A for Astrocyte cells, O for

Oligodendrocyte cells, * for unknown cells or clutter. Nodes without marks were not labeled.

Figure 4.13 SOM with size 12 by 8 using 5 features

41

As one can see from Figure 4.13, three types of the cell are separated quite well. Neuron cells are

clustered in the left-upper corner, while Oligodendrocyte cells are grouped more in the right half of the

picture and Astrocyte in the middle. There is an issue of misclassification of unknown cells (marked with

the star “*”). This problem could be solved in a couple of ways. The first one is to change the size of the

grid to see how it affects the distribution. Figure 4.14 shows how mapping with grid size 20 by 16 with

quantization error 4.1. The rest of the training parameters were the same for all tests. Then the training

parameters could be changed, to achieve more precise assignments. As one can see the clustering of

Oligodendrocyte cells and Astrocyte cells changed.

Figure 4.14 SOM with size 20 by 16 using 5 features

Also new features could be added in order to have better separation. Figure 4.15 shows mapping

calculated only with 3 parameters: area, distinctness and entropy. Quantization error is 5.6. Figure 4.16

shows mapping calculated using another three parameters: area, roundness and maximum radius.

Quantization error is 6.46.

42

Figure 4.15 SOM with size 12 by 8 using area, distinctness and entropy as features

Figure 4.16 SOM with size 12 by 8 using area, roundness and maximum radius as features

Another way to achieve better separation is to have a larger database, which would give a better

statistical knowledge. But the amount of data was too limited to perform an extensive research and build a

reliable database.

The main goal was to provide a tool for feature research. Now such research can be performed to

find the parameters of training, so the approximation would give reliable result and class separation.

43

CAHPTER 5

COUNTING OF BACTERIA

This chapter describes an application created for the UNH Microbiology Department. During the

development of the interface library and AMORS, I tried to find a different task to test AMORS. I made a

contact with assistant professor Elise Sullivan from the Microbiology Department at UNH. She defined a

problem, which is discussed in this chapter. Appendix D contains the detailed information about the

plug-ins discussed in this chapter.

5.1 Problem statement

Microbiology research often requires data about how many bacteria are in a given sample. Many

times a researcher has to count bacteria by visual inspection of the specimen using a microscope and

counting their number in different areas within the sample. It would be a big help for this to be done

automatically.

There are different situations in which counting is required. The main thing to keep in mind is that

there could be not only bacteria in the specimen, but also some clutter like pieces of dust and dirt, or even

different kind of bacteria which should not be mixed with the kind being counted. Because of counting can

be very subjective. So let us consider all these factors as noise, which is interfering with the signal

(bacteria). There is not much noise in the specimens where bacteria have been grown in an artificial

environment (pure cultures), but some noise is introduced by the air bubbles in the water, for instance.

Figure 5.1 shows an example of the sample taken in an industrial environment with very high

noise in it. Figure 5.2 shows a picture of a pure culture.

44

Figure 5.1 Industrial example

Figure 5.2 Pure culture (inverted)

Because of the different shapes of the bacteria and different levels of the noise in the specimen,

different approaches can be used to solve the problem. In my case the primary goal was to calculate the

number of bacteria in the sample with a pure culture using tools provided by AMORS.

5.2 Previous work

Even though some vendors of digital cameras for microscopes provide software packages to

simplify working with images, I did not find a tool, which would perform automatic counting. Instead, one

can be offered an opportunity to make manual counting by clicking on objects of interest and marking

them, and after that the total count of markings is available (www.zeiss.com).

5.3 Acquisition and displaying

The translation stage and the digital camera was not available at the time of the experiments. To

test the program a special acquisition module was designed, which read the image files in TIFF format.

Experiment data images (Figure 5.2) were captured using the hardware board MaxPci. The input to this

board was an RS-170A analog composite video signal from a standard RS-170A camera. The camera was

mounted on an Olympus BH-2 microscope and the Datacube Max Vision digital image processing system

was used for acquisition. The Max Vision system is equipped with an 8-bit analog-digital converter

producing 256 intensity levels. An Olympus A100PL 1.30oil objective (type of objective that uses oil as an

immersion medium) was used. The camera was placed in the monocular path of the microscope using a

45

special eyepiece with a magnification of 0.3. Images were saved in BMP format by the capturing software.

BMP images were converted into TIFF format using Photoshop [13].

A number of images were taken to perform the experiment and saved in TIFF format, so during

the experiments the user was asked for the file to use as an input.

Later on a digital camera with resolution 1224x946x24bits was used to acquire images like the one

in Figure 5.3

Figure 5.3 Different kind of bacteria in the pure culture (inverted)

There was no need to design an acquisition plug-in, which would work directly with the MaxPci

hardware, because it was used only for the experiment. And the camera used to capture the data cannot be

accessed by applications other than the one provided with the camera. It was the policy of the company

Zeiss. So appropriate programs were used to make TIFF images and the FromFileAcq plug-in was used to

load them. Displaying was done using the SimpleDisplay plug-in (see Appendix D for more information).

5.4 Methods

Bacteria should be located in the image, in order to count them. To locate bacteria, the simple

thresholding was applied as the first step, so the output was converted into a binary image. For the moment

the user should define the value for thresholding, but it is possible to use histograms to find the threshold

value automatically. The binary image was supplied as an input to the connectivity algorithm in order to

perform blob-analysis. Once blobs were separated their area was calculated and all blobs with an area less

then desired were discarded. The information about blobs was submitted to the displaying plug-in. All

46

procedures were implemented in AMORS interfaces library, so this project utilizes AMORS functionality

to simplify implementation.

The following plug-ins were used for bacteria counting, even though they were implemented for

testing of the cell recognition application: Area, Simple Rejecter and Simple Display (see appendix D for

description of the plug-ins). They are an example of how plug-ins designed for different systems can be

utilized without any changes. FromFileAcq, MinLimit, MaxLimit, AreaDivision, MorphologyOp and Blob

Separation plug-ins were implemented specially for this application. They are an example of how the

system can be extended.

5.5 Results

A number of samples were taken to test the program. The first step was to configure a new script

for AMORS. Then the Research Mode was engaged, so the proper settings could be found. Figure 5.4

shows the configuration of the plug-ins used in AMORS to build this application.

Figure 5.4 The configuration of the plug-ins for AMORS to count bacteria

The system has the following configuration: Acquisition: FromFileAcq plug-in; Object

Separation: Blob Separation plug-in; Feature Extraction: Area plug-in, MinLimit plug-in, MaxLimit plug-

47

in, MorphologyOp plug-in, AreaDivision plug-in; Classification: Simple Rejecter plug-in; Displaying:

Simple Display plug-in.

5.5.1 Experiment 1

The original image is shown in Figure 5.5

Figure 5.5 Image taken from microscope (inverted)

A square part of the image was extracted and supplied as input to AMORS. The following settings

were used: Threshold=55, Minimal area=2;

Figure 5.6 shows the input image and Figure 5.7 shows the result of counting.

Figure 5.6 Input image (inverted)

Figure 5.7 Result (inverted)

Rectangles show counted bacteria. The number is 45. It could be noticed that in one case (bottom

left) two bacteria were counted as one. So the accuracy of this calculation is:

(counted*100%/total number)=45*100/46=97.8%

48

5.5.2 Experiment 2

Another experiment with a very small amount of bacteria in the image was performed.

Figure 5.8 Image taken from the microscope (inverted)

Figure 5.9 Input image (inverted)

Figure 5.10 Result (inverted)

Figure 5.11 Image with applied threshold (inverted)

The number of bacteria found in this experiment is 9 and it is very easy to verify that 100% of the

bacteria were calculated. Parameters which were used are: Threshold=50, Minimum area=4.

5.5.3 Experiment 3

In this experiment the goal was to test how the program will react in the case of a very big number

of bacteria in the image.

Figure 5.12 Input image (inverted)

Figure 5.13 Image with applied threshold

(inverted)

49

After adjusting parameters to the following: Threshold=70, Minimum area=1, the result of the

counting was quite satisfactory. 219 bacteria were found. From Figure 5.13 one can see that a couple of

bacteria were counted as one instead of two, but accuracy is still more then 95%.

5.5.4 Experiment 4

When a new digital camera had arrived, the program was tested with a new high-resolution image

data and a different kind of bacteria shown in Figure 5.3 and Figure 5.14. After analyzing it was clear that

clustering of bacteria was too high to count them properly. A new feature plug-in was added into the

system. This plug-in looked for the blobs with big areas and divided them using average area for one

bacteria. In this way the user can set up the system appropriately to count bacteria properly.

Figure 5.14 Input image (inverted)

Figure 5.15 Result (inverted)

It can be seen that in some cases two bacteria were split into three parts, and three bacteria were

split into two parts. Also some adjusting of the average area could be done, the high-resolution of the input

data provides with the large number of bacteria where both combinations are equally probable. And

because only the total number of bacteria is important, the overall result has 95% of accuracy.

5.6 Conclusions

Professor Elise Sullivan from Microbiology Department, provided samples of bacteria for testing.

She was satisfied with the shown results. The department purchased a digital camera (Experiment 4), so the

designed system can be easily used to speed up counting. The accuracy of counting is the same as for

50

human counting, but the speed is much higher. Tests were done using a Pentium 2, 800 MHz with

Windows 2000. Input images had a resolution of 1224 by 946 pixels with 8-bit color depth, average

number of counted cells per image was 400 bacteria. Analyzing took around 1 minute (58 seconds). For a

human it would take more than 5 minutes.

Equipped with this system the amount of processed views for each sample can be dramatically

increased, which improves the accuracy of the result for each sample. Counting of bacteria in a pure culture

is useful, but a lot of work should be done with industrial samples. The next step would be to design

methods to find and recognize different bacteria in industrial samples.

51

CHAPTER 6

DISCUSSION

Time is money! This concept dominates in the current business and technology. This is a reason

why automatic recognition systems are in demand today. An automatic recognition system can be used to

improve the quality or speed of the process. In addition, such a system can be used in areas where a human

cannot be present to supervise the process or their presence could put the person in danger (nuclear reactor

or the surface of Mars, for instance). The conclusion is that an automatic recognition system may save

health, time and money for people. These are well known facts and a lot of research is done in the area of

the automatic recognition. Companies were created to answer the increasing demand for such systems.

Such companies create some specific systems for specific tasks. There are special software packages,

which are used during the creation of the automatic recognition systems, in order to simulate and test them.

Many commercial companies will not disclose their research to allow uncontrolled use by other people.

They will do it for money. But if we take a look into the research done at universities, we will see a

completely different picture. Most of the work is open for use by other universities. Of course, it is not easy

to use someone else’s research, without the complete understanding of what is done and how it is done.

This happens even in case when the same software is used for the same research topics. During the research

students are trying to get the result as fast as they can, they need to see if this method works better than the

other. Once a result is achieved, students show it in their reports. Modules or scripts that they created to

obtain the result are often not well documented or even sometimes not available at all. When someone else

wants to repeat the result given in the paper, one often has to rewrite these scripts, methods or algorithms

on their own. This thesis is an attempt to solve this problem.

I decided to create a library, which would simplify the creation of automatic recognition systems.

The goal was to have an extendable system, which could be used not only for the research used as

52

examples, but also would simplify the transaction from the research stage to the end-user application. I took

the research on cell recognition and made the ready-to-use application. I developed this application keeping

in mind the idea of some generalization. I wanted to develop a very flexible and extendable application.

During the development I picked another application (bacteria counting). The comparison of methods used

for both applications showed the similar parts between applications. This provided me with the idea of a

standard way for creating automatic recognition systems. The concept of plug-ins allows the designed

system to be easily extendable.

The result of this thesis is the interface library described in the Appendices. This library was used

to create two applications for cell recognition and bacteria counting. These applications demonstrate that

the proposed method of building a recognition system can be successfully used in practice. This ready to

use, documented and free software allows researchers to develop their own systems and reuse plug-ins

developed by other people. The separation of the whole system to the smaller modules was done. This

gives an opportunity to work on one method at a time and allows reusing of this method later on in a

different project. The standard way of connecting the blocks allows such an approach to be used.

The designed library is at a stage from which one can create modifications and improvements. It is

ready to use and can be used immediately without modifications. Methods, which require feedback

between modules, can also be implemented using the described approach. This is very important for

adaptive automatic recognition methods. The next step would be to show how the proposed philosophy

works with recognition tasks in other areas, such as character recognition. The interface library provides

enough flexibility to build a recognition system for any purpose. AMORS and the currently implemented

plug-ins allow researchers to use the system immediately, and improve its performance by adding

additional processing using newly designed plug-ins.

It is envisioned that this library will be used at more than one university. A constraint on the

source code should be put, in order to maintain compatibility of the code. This thesis can become an open

source project, which would help the science community by providing a standard. People in different

universities could exchange the plug-ins and they will be compatible and ready to use.

53

The future improvement to be done is to implement a method to describe a non-linear connection

of the plug-ins, when based on the result of one plug-in, the order of the other plug-ins would be changed

according to some rules. The system configuration can then be saved and reused later.

Now the library (CD is attached, sources and documentation are also available for downloading

from the internet http://sjcomp.virtualave.net/thesis/ or http://www.ece.unh.edu/svpal/) is available for use

by the community. It is free to use. The source code is available and documented. Examples of use are

given. It can be used on different operating systems, which have a C++ compiler. It is the author’s hope

that the methods and platform provided would be adopted by others.

54

APPENDIX A

INTERFACE LIBRARY DESCRIPTION

This appendix describes the details of the interface library. Classes and their members are listed.

A.1 Interfaces.lib library

Goal of this section is to introduce the concept and the organization of the interface library

designed the plug-ins. Library is a statically linked library. All plug-ins are using types and objects defined

in the interface library. Though this library was implemented and tested under Windows 2000, it was

designed using Standard Template Library (StlPort - http://www.stlport.org), which means that it is eas y to

port to any other platform for which Standard Template Library exists.

Interface library requires you to mention following files in your project:

1. Interfaces.lib – library file;

2. Interface_def.h – header file with definitions of the objects;

A.2 Interface objects and functions

Interfaces_def.h includes definitions for the following header files: AllConstants.h, SJIniFile.h,

SJBuffer.h, SJImage.h, SJImageList.h, SJObjectInfo.h, SJObjectInfoList.h, SJSpecimen.h, MainLoop.h,

Processing.h, Utils.h;

AllConstants.h - constants and enumerator values returned or required by functions and objects.

SJIniFile.h - class CSJIniFile used to store and retrieve configuration information about working

scenario and parameters;

SJBuffer.h - class CSJBuffer used to store a raw image data acquired from the camera or results of

processing routines;

55

SJImage.h - class CSJImage stores the image data and parameters required for the processing;

class CSJRGBAColor - describes the color of the pixel;

SJImageList.h - class CSJImageList stores a list of images, so more then one image can be used in

the processing;

SJObjectInfo.h - class CSJObjectInfo stores information about the object provided by the plug-ins;

class CSJRect describes a rectangular area;

SJObjectInfoList.h - class CSJObjectInfoList - stores information about a set of objects;

SJSpecimen.h - class CSJSpecimen - stores all information about the current processing, from the

image data to the variables some plug-ins would like to send to each other;

MainLoop.h - contains routines of main and research loop;

Processing.h - contains some image-processing algorithms;

Utils.h - contains some utility functions.

A.3 Classes description

This section contains total description of the classes and their class members.

A.3.1 CSJBuffer

class CSJBuffer
#include “SJBuffer.h”
Description Manages storage of one color plane of the image data in the memory. Also

provides functions to manipulate with this data
Usage Create(…) function should be called in order to initialize the variables of this class

with the given parameters. Create(…) handles allocating and cleaning of the
memory for you

Class member-functions:

CSJBuffer() – Default constructor
Synopsis CSJBuffer()
Input parameters None
Return value None
Description Default constructor for the class, initializes all member variables
Usage Called automatically

CSJBuffer(const CSJBuffer&) – Copy constructor
Synopsis CSJBuffer(const CSJBuffer&)
Input parameters CSJBuffer& class of original buffer
Return value None
Description Copy constructor for the class, initializes all member variables as they are in the

input parameter, memory is copied, so object is a copy of the given one.

56

Usage Use to initialize an object with already existing one.

Create(int, int, int) – Creating buffer
Synopsis bool Create(int iWidth, int iHeight, int iBytesPerPixel=ONE_BYTE)
Input parameters iWidth – width of the buffer in pixels

iHeight – height of the buffer in pixels
iBytesPerPixel – number of bytes per pixel; supported values are ONE_BYTE
(for the 8 bit color) and TWO_BYTES (for up to 16 bit color)

Return value true – if allocation of the memory was succesfull
false – otherwise

Description Releases allocated memory (if any), sets member variables to the given values,
allocates memory for the buffer, clears the momory

Usage Call this function each time you want to reset the buffer contents

~CSJBuffer() – class destructor
Synopsis ~CSJBuffer()
Input parameters None
Return value None
Description Releases allocated memory
Usage Is called automatically when object gets released

&operator=(const CSJBuffer&) – assignment operator
Synopsis CSJBuffer &operator=(const CSJBuffer&)
Input parameters CSJBuffer& original class to be equal to
Return value Returns own address
Description Used to copy parameters and contents of another buffer
Usage Use when you have to created objects of the class and want them to be the same

Copy(CSJBuffer, bool, int, int, int, int) – creates object with the part of the original object
Synopsis void Copy(CSJBuffer& bufobj, bool yKeepOriginalBPP=false, int iLeft=0, int

iTop=0,int iRight=0, int iBottom=0);
Input parameters bufobj – data will be copied from this object

yKeepOriginalBPP – allows not to have the same value of bytes per pixel, default
is false, so bytes per pixel value will be taken from bufobj
iLeft, iTop, iRight, iBottom – boundaries of the region to be copied from the
bufobj. If all are 0s all memory is copied

Return value None
Description Creates buffer with the data from the region of another object
Usage Use when you want to copy the region of the buffer.

CopyIntoPos(CSJBuffer&, int, int) – copies another buffer into certain position
Synopsis void CopyIntoPos(CSJBuffer& bufobj, int iLeft=0, int iRight=0)
Input parameters Bufobj – buffer to get data from

iLeft, iRight – position at which insert the data
Return value None
Description Copies the data to the given position, the whole input buffer is inserted if there is

enough memory allocated
Usage Use when you want to overwrite some region of the buffer with the data from

another buffer

GetHeight() – height of the buffer
Synopsis int GetHeight()
Input parameters None
Return value The height of the buffer in pixels
Description Returns the height of the buffer
Usage Use to request the height of the buffer

57

GetWidth() – width of the buffer
Synopsis Int GetWidth()
Input parameters None
Return value The width of the buffer in pixels
Description Returns the width of the buffer
Usage Use to request the width of the buffer

GetBufferSize() – size of the memory used for the memory (bytes)
Synopsis int GetBufferSize()
Input parameters None
Return value Returns the number of bytes allocated by the current object
Description Function returns the number of bytes allocated by the current object in the

memory for the data by multiplying width, height and the number of bytes per
pixel

Usage Use to request the number of bytes allocated in the memory for the current buffer

ClearMemory() – filling memory with 0s
Synopsis void ClearMemory()
Input parameters None
Return value None
Description Sets all bits in the allocated memory to 0
Usage Use to reset the buffer to all 0s

FillBufferFrom(byte*,int) – filling buffer from the data in the memory
Synopsis Bool FillBufferFrom(byte* pbSrcBuf, int iLength)
Input parameters pbSrcBuf – pointer to the first byte in the memory to begin copying from

iLength – number of bytes to copy
Return value true – if successful (enough space to copy memory)

false – otherwise
Description Fast copying of the memo ry bytes from the given source to the buffer
Usage Use it if you have some data already in the memory and you want to use it. No

parameter (width or height) is changed.

FillBufferFrom(CSJBuffer&) –copying the data from one buffer to another
Synopsis bool FillBufferFrom(CSJBuffer& bufobj)
Input parameters bufobj – source of the data
Return value true – if copying is successful (enough space and so on)

false – otherwise
Description Fast copying of the data from one buffer to another, without change in the

parameters of the buffer
Usage Use it when the size of the buffers is the same (number of allocated bytes in the

memory is the same), but you want to change the formatting. Was buffer 5x3, you
want 3x4

GetBytesPP() – bytes per pixel
Synopsis int GetBytesPP()
Input parameters None
Return value Returns number of bytes used to describe one pixel (color resolution)
Description Function used to return number of bytes used to describe one pixel, possible

values are: ONE_BYTE=1, TWO_BYTES=2
Usage Use to find out how many bytes are used to describe the pixel

GetByteBuffer() – byte buffer address
Synopsis byte* GetByteBuffer()
Input parameters None

58

Return value Returns pointer to the first byte in the allocated memory
Description Returns pointer to the first byte in the allocated memory with the data
Usage Use to get the address of the first byte of the data to manipulate with the data

directly

GetWordBuffer() – word buffer address
Synopsis WORD* GetWordBuffer()
Input parameters None
Return value Returns pointer to the first word in the allocated memory
Description Returns pointer to the first word in the allocated memory with the data
Usage Use to get the address of the first word of the data to manipulate with the data

directly

GetWordValue(int, int) – word value in the buffer
Synopsis WORD GetWordValue(int iX, int iY)
Input parameters iX – offset for X

iY – offset for Y
Return value Returns the value of the word in the buffer with the given coordinates
Description Returns the value of the word in the buffer with the given coordinates
Usage Use it when you want to get the word value for a particular pixel (be careful no

checking on ranges is performed and if you are using one byte per pixel exception
could be called)

GetByteValue(int,int) – byte value in the buffer
Synopsis Byte GetByteValue(int iX, intiY)
Input parameters iX – offset for X

iY – offset for Y
Return value Returns the value of the byte in the buffer with the given coordinates
Description Returns the value of the byte in the buffer with the given coordinates
Usage Use it when you want to get the byte value for a particular pixel

GetValue(int, int) – value in the buffer
Synopsis WORD GetValue(int iX, intY)
Input parameters iX – offset for X

iY – offset for Y
Return value Returns the value of in the buffer with the given coordinates
Description Returns the value of in the buffer with the given coordinates, warps GetByteValue

and GetWordValue, picking the correct function depending on the bpp in the
buffer

Usage Use it instead of GetByteValue or GetWordValue for more safty

SetWordValue(int,int,WORD) – sets word value of the pixel
Synopsis void SetWordValue(int iX, int iY, WORD wValue)
Input parameters iX – offset for X

iY – offset for Y
wValue – value to set pixel to

Return value None
Description Sets the pixel with the coordinates iX, iY to the wValue
Usage Use it to set the word value in the buffer

SetByteValue(int,int,byte) – sets byte value of the pixel
Synopsis void SetByteValue(int iX, int iY, byte b Value)
Input parameters iX – offset for X

iY – offset for Y
bValue – value to set pixel to

Return value None

59

Description Sets the pixel with the coordinates iX, iY to the bValue
Usage Use it to set the byte value in the buffer

SetValue(int,int,WORD) – sets value of the pixel
Synopsis void SetValue(int iX, int iY, WORD wValue)
Input parameters iX – offset for X

iY – offset for Y
wValue – value to set pixel to

Return value None
Description Sets the pixel with the coordinates iX, iY to the wValue
Usage Use it to set a value in the buffer, the appropriate conversion is called, so if there

is only one byte per pixel wValue will be converted to byte type

void SetDirectValue(int,WORD) – sets value with a given offset in the buffer
Synopsis void SetDirectValue(int iP, WORD wValue)
Input parameters iP – offset in the buffer

wValue – value to set pixel too
Return value None
Description Sets the value in the buffer with the given offset iP to wValue (buffer is

interpreted as a vector)
Usage If only one byte per pixel is used wValue is converted to the byte type

GetDirectValue(int) – value in the buffer at the given offset
Synopsis WORD GetDirectValue(int iP)
Input parameters iP – offset in the buffer
Return value Returns the value in the buffer with the given offset
Description Returns the value in the buffer with the given offset (buffer is interpreted as a

vector)
Usage Retrieves the pixel from the memory and returns it as a WORD type

Invert() – inverting values
Synopsis void Invert()
Input parameters None
Return value None
Description Inverts the data in the buffer
Usage Call to invert the data (using ClearMemory() and then Invert() makes all pixels to

be at the maximum value)

Mean2() – mean of the pixel values
Synopsis double Mean2()
Input parameters None
Return value Returns the mean value for the pixels in the buffer
Description Returns the mean value for the pixels in the buffer (sum of all pixels divided by

the number of pixels)
Usage Call to get the mean

Std2() – standard deviation
Synopsis double Std2()
Input parameters None
Return value Returns the standard deviation of the pixels in the buffer
Description Returns the standard deviation of the pixels in the buffer
Usage Call to get the standard deviation

Min() – minimum value of the pixel
Synopsis WORD Min()
Input parameters None

60

Return value Returns the minimum value of the pixel in the buffer
Description Finds the minimum value of the pixel in the buffer, if one byte per pixel is used

the value is cast to the WORD type
Usage Call to get the minimum value

Max() – maximum value of the pixel
Synopsis WORD Max()
Input parameters None
Return value Returns the maximum value of the pixel in the buffer
Description Finds the minimum value of the pixel in the buffer, if one byte per pixel is used

the value is cast to the WORD type
Usage Call to get the maximum value

Crop(int,int,int,int) – crops data in the buffer
Synopsis void Crop(int iLeft, int iTop, int iRight=0, int iBottom=0)
Input parameters iLeft, iTop, iRight, iBottom – region to be saved in the buffer, all outside data will

be lost
Return value None
Description Crops the data in the buffer to the given area
Usage If iRight and iBottom are set to 0, then area with top left point (0,0) and bottom

right point(iLeft, iTop) is used

A.3.2 CSJRGBAColor

class CSJRGBAColor
#include “SJImage.h”
Description Describes color of the image
Usage Used to retrieve and set pixel colors in CSJImage class

Class variables:

WORD r – red value for the pixel;
WORD g – green value for the pixel;
WORD b – blue value for the pixel;
WORD a – additional channel (can be used as a transparency)

Class member-functions:

CSJRGBAColor() – default constructor
Synopsis void CSJRGBAColor()
Input parameters None
Return value None
Description Initializes all member variables with 0
Usage Called automatically

CSJRGBAColor(WORD) – constructor
Synopsis void CSJRGBAColor(WORD w)
Input parameters w – value for all color components accept member variable “a”
Return value None
Description Initializes all member variables with “w”
Usage Can be used to give a grayscale value to the color on creation of the object

CSJRGBAColor(WORD,WORD,WORD,WORD) – constructor
Synopsis void CSJRGBAColor(WORD wr,WORD wg,WORD wb,WORD wa)

61

Input parameters wr, wg, wb, wa – values to initialize member variables to
Return value None
Description Initializes member variables with the given values
Usage Can be used to give a color value on ??? creation of the object

~CSJRGBAColor() – destructor
Synopsis void ~CSJRGBAColor()
Input parameters None
Return value None
Description Standard destructor
Usage Called automatically

Clear() – reset color
Synopsis void Clear()
Input parameters None
Return value None
Description Sets all member variables to 0
Usage Sets all member variables to 0

Set(WORD,WORD,WORD,WORD) – set color
Synopsis void Set(WORD wr,WORD wg,WORD wb,WORD wa)
Input parameters wr, wg, wb, wa – values to set member variables to
Return value None
Description Sets the color of the pixel
Usage Sets the color of the pixel

SetSame(WORD) – set grayscale color
Synopsis void SetSame(WORD w)
Input parameters w – value to set color channels to
Return value None
Description Function sets r,g and b variables of the class to w
Usage Use to set a grayscale color

Average(CSJRGBAColor) – averages color with a given color
Synopsis void Average(CSJRGBAColor n)
Input parameters n – color to make an average with
Return value None
Description Sums each variable of the class with a corresponding value of n and devides by 2
Usage Call to find what would be an average color for the current and the given color

Average(double) – averages color with a given value
Synopsis void Average(double n)
Input parameters n – value to find an average with
Return value None
Description Finds an average for each member variable of the class and the given value n
Usage Class is summing member variable with the n and divides it by 2

GetGray() – grayscale value
Synopsis WORD GetGray()
Input parameters None
Return value Returns the grayscale value of the color
Description Sums all color channels and divides them by 2
Usage Call to get a grayscale value

operator+(const CSJRGBAColor&)
Synopsis CSJRGBAColor& operator+(const CSJRGBAColor& obj)

62

Input parameters obj – color to sum with
Return value Returns own address
Description Allows to sum two colors together
Usage Each component is summed with checking for the limits (so color component can

not go above 0xFFFF)

operator-(const CSJRGBAColor&)
Synopsis CSJRGBAColor& operator-(const CSJRGBAColor& obj)
Input parameters obj – color to be subtracted
Return value Returns own address
Description Allows to subtract one color from another
Usage Components get subtracted with checking for the limits (so color component can

not go below 0)

operator/(const CSJRGBAColor&)
Synopsis CSJRGBAColor& operator/(const CSJRGBAColor& obj)
Input parameters obj – color to divide on
Return value Returns own address
Description Allows to dived one color by another
Usage Each component is divided with checking for the limits (so color component can

not go below 0)

operator/(const int&)
Synopsis CSJRGBAColor& operator/(const int i)
Input parameters i – value to divide on
Return value Returns own address
Description Allows to dived color by the value
Usage Each component is divided with checking for the limits (so color component can

not go below 0)

operator<(const CSJRGBAColor&)
Synopsis bool operator<(const CSJRGBAColor& obj)
Input parameters obj – color to compare with
Return value Own address
Description Compares grayscale value of the colors
Usage Use to compare two colors

A.3.3 CSJImage

class CSJImage
#include “SJImage.h”
Description Describes 2d image data with the color depth up to 32 bits (four color channels)
Usage Used to handle image data in the system. Create(…) function should be called in

order to initialize the variable of this class with given parameters. Create(…)
handles allocating and cleaning of the memory for you.

Class member functions:

CSJImage() – default constructor
Synopsis CSJImage()
Input parameters None
Return value None
Description Default constructor, which initializes all variables in the class
Usage Called automatically

63

CSJImage(const CSJImage&) – copy constructor
Synopsis CSJImage(const CSJImage& original)
Input parameters original – object to initialize with
Return value None
Description Initializes the object with the given object
Usage Use to create a copy of another object

&operator=(const CSJImage&) – assignment operator
Synopsis CSJImage &operator=(const CSJImage &original)
Input parameters original – object to get value from
Return value Own address
Description Makes the current object to be equal to the given one
Usage Use to make a copy of the object

~CSJImage() – destructor
Synopsis virtual ~CSJImage()
Input parameters None
Return value None
Description Takes care of cleaning the memory
Usage Called automatically

Create(int,int,int,int,float) – creates an image
Synopsis bool Create(int iWidth, int iHeight, int iColorDepth=COLOR_DEPTH_8BITS, int

iNumber=1, float fParameter=1.0f)
Input parameters iWidth, iHeight – size of the image

iColorDepth – color depth, effects bytes per pixel for each channel buffer
iNumber – number of the image (for keeping track of the images)
fParameter – one can use this value to have an additional label for the image

Return value true – if creation is successful
false – otherwise

Description Allocates memory for the color channels
Usage Call it to create or recreate the image

CreateFromFile(const char*,int,int,float) – creating an image from the file
Synopsis bool CreateFromFile(const char* cpFileName, int

iColorDepth=COLOR_DEPTH_8BITS, int iNumber=1, float fParameter=1.0f)
Input parameters CpFileName – filename to the file on hard disk drive

iColorDepth – color depth, effects bytes per pixel for each channel buffer
iNumber – number of the image (for keeping track of the images)
fParameter – one can use this value to have an additional label for the image

Return value true – if creation is successful
false – otherwise

Description Allocates memory and loads information from the file (TIFF file format is
supported)

Usage Call it to create the image and load the data from the file

CreateFrom(CSJImage*,int,int,int,int) – creates image from another image
Synopsis int CreateFrom(CSJImage* Im, int iLeft=0, int iTop=0, int iRight=0, int

iBottom=0)
Input parameters Im – source image

iLeft,iToop,iRight,iBottom – rectangle to copy image from
Return value 1 – in the case of success

0 – in the case of error
Description Creates the image with the data from the given rectangle at Im
Usage Use it if you want to create an image from the part of another image

64

GetColorDepth() – color depth for the image
Synopsis int GetColorDepth()
Input parameters None
Return value Returns color depth for the image
Description Returns color depth for the image, possible values are:

COLOR_DEPTH_8BITS=8, COLOR_DEPTH_16BITS=16,
COLOR_DEPTH_24BITS=24, COLOR_DEPTH_32BITS=32,
COLOR_DEPTH_16BITS_GRAYSCALE=14

Usage Use it to find out what the color depth is

GetHeight() – image height
Synopsis int GetHeight()
Input parameters None
Return value Returns the height of the image
Description Returns the height of the image
Usage Use to find what the height of the image is

GetWidth() – image width
Synopsis int GetWidth()
Input parameters None
Return value Returns the width of the image
Description Returns the width of the image
Usage Use to find what the width of the image is

ClearImage() – clears image
Synopsis void ClearImage()
Input parameters None
Return value None
Description Sets all pixels in the image to 0,0,0 RGB value
Usage Use it to have a completely black image

GetGrayScaleImage() – grayscale image
Synopsis CSJBuffer* GetGrayScaleImage()
Input parameters None
Return value Returns pointer to the buffer with the grayscale information
Description Allows to have the access to the buffer with the grayscale values of the image

(right now only one channel is used)
Usage Use it if you need to get some information or if you want to modify the data of the

image

GetRedChannel() – red channel
Synopsis CSJBuffer* GetRedChannel()
Input parameters None
Return value Returns the pointer to the red channel of the image
Description Allows to have the access to the buffer with the red component of the color
Usage Use it if you need get some information or if you want to modify the data of the

image

GetGreenChannel() – green channel
Synopsis CSJBuffer* GetGreenChannel()
Input parameters None
Return value Returns the pointer to the green channel of the image
Description Allows to have the access to the buffer with the green component of the color
Usage Use it if you need get some information or if you want to modify the data of the

image

65

GetBlueChannel() – blue channel
Synopsis CSJBuffer* GetBlueChannel()
Input parameters None
Return value Returns the pointer to the blue channel of the image
Description Allows to have the access to the buffer with the green component of the color
Usage Use it if you need get some information or if you want to modify the data of the

image

GetAlphaChannel() – alpha channel
Synopsis CSJBuffer* GetAlphaChannel()
Input parameters None
Return value Returns the pointer to the alpha channel of the image
Description Allows to have the access to the buffer with the alpha component of the color
Usage Use it if you need get some information or if you want to modify the data of the

image

GetChannelX() – channel X (one of 4 color channels [1,2,3,4]=[red, green, blue,alpha])
Synopsis CSJBuffer* GetChannelX()
Input parameters None
Return value Returns the pointer to the buffer with the color channel
Description Returns the pointer to the buffer with the color channel
Usage It is better to use GetXXXChannel functions instead (where XXX one of Red,

Green, Blue, Alpha)

GetColor(int,int) – get the pixel color
Synopsis CSJRGBAColor GetColor(int iX,int iY)
Input parameters iX, iY – coordinates of the pixel
Return value Returns the color of the pixel
Description Returns the color of the pixel
Usage Use to get the color of the pixel

SetColor(int,int) – set pixel color
Synopsis void SetColor(int iX,int iY, CSJRGBAColor pixel)
Input parameters iX, iY – coordinates of the pixel

pixel – new color
Return value None
Description Sets the pixel color at coordinates (iX, iY)
Usage Use to the color of the pixel

MaxPossibleColor() – max possible color in the image
Synopsis CSJRGBAColor MaxPossibleColor()
Input parameters None
Return value Returns the color value
Description Returns the maximum color value for the image depending on the image color

depth
Usage Use it to find what is the maximum color, which possibly can be stored in the

image

MinPossibleColor() – min possible color in the image
Synopsis CSJRGBAColor MinPossibleColor()
Input parameters None
Return value Returns the color value
Description Returns the minimum color value for the image depending on the image color

depth
Usage Use it to find what is the minimum color , which possibly can be stored in the

66

image

MaxColor(), MaxColor(int, int, int, int) – maximum color in the image
Synopsis CSJRGBAColor MaxColor(int iL=0,int iT=0,int iR=0, int iB=0)
Input parameters iL,iT,iR,iB – left, top, right and bottom limits to search for the value
Return value Returns the color value
Description Returns the maximum color value found in the region of the image (if all values

are set to 0, all image is searched)
Usage Use it to find what is the maximum color in the region of the image

MinColor(), MinColor(int, int, int, int) – minimum color in the image
Synopsis CSJRGBAColor MinColor(int iL=0,int iT=0,int iR=0, int iB=0)
Input parameters iL,iT,iR,iB – left, top, right and bottom limits to search for the value
Return value Returns the color value
Description Returns the minimum color value found in the region of the image (if all values

are set to 0, all image is searched)
Usage Use it to find what is the minimum color in the region of the image

GetNumber() – returns number of the image
Synopsis int GetNumber()
Input parameters None
Return value Returns the number of the image
Description Returns the number of the image
Usage Use to find what is the number of the image

GetParameter() – parameter of the image
Synopsis float GetParameter()
Input parameters None
Return value Returns the parameter of the image
Description Returns the parameter of the image
Usage Use to find what is the parameter value of the image

GetBytesPerPixelInBuffer() – bytes per pixel in the buffer
Synopsis int GetBytesPerPixelInBuffer()
Input parameters None
Return value Returns the number of bytes per pixel for color channel buffers, it is the same for

all of them
Description Returns the number of bytes per pixel in the buffer, see CSJBuffer::GetBytesPP().

Could be 1 or 2.
Usage Use to obtain the number of bytes per pixel

Invert() – inverting values
Synopsis void Invert()
Input parameters None
Return value None
Description Inverts the data in the image
Usage Call to invert the image

IsEmpty() – check for information in the image
Synopsis bool IsEmpty()
Input parameters None
Return value true – if image size is bigger then 1 by 1

false – otherwise
Description Shows if the image was created
Usage Use it for a fast check if image was created

67

Expand(int,int,CSJRGBAColor) – exapands image width and heigth
Synopsis void Expand(int iW, int iH,CSJRGBAColor color)
Input parameters iW,iH – new values for width and height

color – additional space will be filled with this color
Return value None
Description The image is expanded according to the supplied values
Usage Use it to make the image bigger

ClipColors(CSJRGBAColor, CSJRGBAColor, CSJRGBAColor)
Synopsis void ClipColors(CSJRGBAColor minc,CSJRGBAColor maxc,CSJRGBAColor

sc)
Input parameters minc – minimum color

maxc – maximum color
sc – replacement color

Return value None
Description Changes all colors which are less or larger then minc and maxc to the new color sc
Usage Use it to assign another value to the pixels with color outside of the region

A.3.4 CSJImageList

class CSJImageList
#include “SJImageList.h”
Description Stores a list of images.
Usage Used to manage the list of images. Copies of the images are stored in the memory

and can be accessed by using GetImage() function. There is no limit on number of
images in the list. But memory can be relocated during addition or deleting of a
the image, so values returned by GetImage() could be not valid

Class member functions:

CSJImageList() – default constructor
Synopsis CSJImageList()
Input parameters None
Return value None
Description Default constructor, which initializes all variables in the class
Usage Called automatically

~CSJImageList() – destructor
Synopsis virtual ~CSJImageList()
Input parameters None
Return value None
Description Takes care of cleaning the memory
Usage Called automatically

Add(CSJImage) – adding a new image to the list
Synopsis void Add(CSJImage newImage)
Input parameters newImage – image to be added
Return value None
Description Adds a new image, by copying it into internal structure.
Usage Once used, pointers saved from GetImage() could be not valid.

Delete(unsigned int) – deleting an image
Synopsis void Delete(unsigned int iIndex=0)
Input parameters iIndex – index of the image to be removed

68

Return value None
Description Deletes the image with a given index if exist one.
Usage Use it to remove the image from the list

GetLength()
Synopsis int GetLength()
Input parameters None
Return value Returns the number of images added to the list
Description Returns the number of images added to the list
Usage Use it to find out what is the valid range of indices for GetImage() or Delete()

GetImage(unsigned int) – get a stored image
Synopsis CSJImage* GetImage(unsigned int iIndex)
Input parameters iIndex – index of the image to be returned
Return value Returns the pointer to the image stored in the memory
Description Returns the pointer to the image stored in the memory
Usage Use it to retrieve the image stored in the list

Clear() – clears the list
Synopsis void Clear()
Input parameters None
Return value None
Description Removes all stored images
Usage Use it to remove all images from the memory

A.3.5 CSJRect

class CSJRect
#include “SJRect.h”
Description Coordinates of a rectangle region
Usage Used to describe the rectangular area (used in CSJObjectInfo class)

Class variables:

int m_iLeft – left boundary
int m_iRight – right boundary
int m_iTop – top boundary
int m_iBottom – bottom boundary

Class member functions:

CSJRect() – default constructor
Synopsis CSJRect()
Input parameters None
Return value None
Description Default constructor, which initializes all variables in the class to all 0s
Usage Called automatically

CSJRect(int,int,int,int) – constructor
Synopsis CSJRect(int iL, int iR, int iT, int iB)
Input parameters iL – left boundary

iR – right boundary
iT – top boundary
iB – bottom boundary

69

Return value None
Description Initializes all variables with the given values
Usage Called automatically

~CSJRect() – destructor
Synopsis virtual ~CSJRect ()
Input parameters None
Return value None
Description Destuctor
Usage Called automatically

Height() – height of the rectangle
Synopsis int Height()
Input parameters None
Return value Returns the height of the rectangle
Description Returns the height of the rectangle
Usage Use to request the height of the rectangle

Width() – width of the rectangle
Synopsis int Width()
Input parameters None
Return value Returns the width of the rectangle
Description Returns the width of the rectangle
Usage Use to request the width of the rectangle

Clear() – resetting rectangle
Synopsis void Clear()
Input parameters None
Return value None
Description Sets all variables to 0
Usage Use it to reset the rectangle

Area() – area of the rectangle
Synopsis int Area()
Input parameters None
Return value Returns the area of the rectangle
Description Returns the area of the rectangle, which is multiplication of width and height
Usage Use it to find the area occupied by the rectangle

PtInRect(int,int) – check if the point is inside of the rectangle
Synopsis bool PtInRect(int iX,int iY)
Input parameters iX,iY – coordinates of the point
Return value true – if point is inside of the rectangle

false – otherwise
Description Checks if the point is inside of the rectangle
Usage Use it to find if this point belongs to the rectangle area

ShiftBy(int,int) – shifting rectangle
Synopsis void ShiftBy(int iX, int iY)
Input parameters iX,iY – offsets for x and y axes
Return value None
Description Shifts all points of the rectangle by the given offset
Usage Use it if you want to shift the rectangle without changing its sise

70

A.3.6 CSJObjectInfo

class CSJObjectInfo
#include “SJObjectInfo.h”
Description Keeps information about object
Usage Used to describe the object parameters and location

Class variables:

CSJRect Rect – position of the object in the image

Class member functions:

CSJObjectInfo () – default constructor
Synopsis CSJObjectInfo()
Input parameters None
Return value None
Description Default constructor
Usage Called automatically

CSJRect(int,int,int,int) – constructor
Synopsis CSJRect(int iL, int iR, int iT, int iB)
Input parameters iL – left boundary

iR – right boundary
iT – top boundary
iB – bottom boundary

Return value None
Description Initializes all variables in the given values
Usage Called to create an initialized object

~CSJObjectInfo() – destructor
Synopsis virtual ~ CSJObjectInfo()
Input parameters None
Return value None
Description Destuctor
Usage Called automatically

SetValue(std::string,int) – set a parameter with an integer value
Synopsis bool SetValue(std::string strName,int iValue)
Input parameters strName – name of the parameter

iValue – value of the parameter
Return value true – if successful

false – otherwise
Description Assigns a numerical value of type integer to the given parameter. Function creates

or changes the value of the parameter
Usage Use it when you want to assign a integer value to the parameter

SetValue(std::string,double) – set a parameter with a value of type double
Synopsis bool SetValue(std::string strName,double dValue)
Input parameters strName – name of the parameter

dValue – value of the parameter
Return value true – if successful

false – otherwise
Description Assigns a numerical value of type double to the given parameter. Function creates

or changes the value of the parameter

71

Usage Use it when you want to assign a value of type double to the parameter

SetValue(std::string,std::string) – set a parameter with a string value
Synopsis bool SetValue(std::string strName, std::string strValue)
Input parameters strName – name of the parameter

strValue – value of the parameter
Return value true – if successful

false – otherwise
Description Assigns a numerical value of type string to the given parameter. Function creates

or changes the value of the parameter
Usage Use it when you want to assign a string value to the parameter

GetValue(std::string) – get value as a string
Synopsis std::string GetValue(std::string strVarName)
Input parameters strVarName – name of the parameter to get value of
Return value Returns string with a value
Description Function returns a string value of the parameter
Usage Use it if you want to get a string value of the parameter even if it was saved as

other type, it will be converted to a string

GetValueI(std::string) – get value as an integer
Synopsis int GetValueI(std::s tring strVarName)
Input parameters strVarName – name of the parameter to get value of
Return value Returns integer value of the parameter or 0 if it is not integer value
Description Function returns the integer value of the parameter or 0 if it is a string
Usage Use it if you want to get a value stored as integer or double. If it was double, some

information will be lost

GetValueF(std::string) – get value as a double
Synopsis double GetValueF(std::string strVarName)
Input parameters strVarName – name of the parameter to get value of
Return value Returns double value of the parameter or 0 if it is not integer value
Description Function returns the double value of the parameter or 0 if it is a string
Usage Use it if you want to get a value stored as integer or double

GetNumVars() – number of variables
Synopsis int GetNumVars()
Input parameters None
Return value Returns number of parameters set for the object
Description Returns number of parameters set for the object
Usage Use to find out how many parameters were saved in this object

DeleteValue(std::string) – deletes value
Synopsis void DeleteValue(std::string strVarName)
Input parameters strVarName – name of the parameter
Return value None
Description Function removes value from the object description
Usage Use it for temporary information, which you do not want to be stored any more

GetBinaryMap() – binary map
Synopsis CSJBuffer* GetBinaryMap()
Input parameters None
Return value Returns pointer to the binary map for the object
Description Location of the object is defined as a rectangular area, but not all of this area can

be occupied by the object, this is a buffer with two values 0 and 0xFF, where
0xFF denotes that current pixel belongs to the object

72

Usage Use it to get access to the binary map of the object

GetTransformed() – transformed image
Synopsis CSJImage* GetTransformed()
Input parameters None
Return value Returns pointer to the transformed image of the object
Description During feature extraction some algorithm could require to have a transform of the

object into different representation (polar, frequency), so one can keep
transformed image for use in more then one plug-in

Usage Use it change or modify

HaveValue(std::string) – if a parameter exists
Synopsis bool HaveValue(std::string strVarName)
Input parameters strVarName – name of the parameter
Return value true – if such a parameter was created for the object

false – if not
Description Function says if there is such a parameter created for the object
Usage Use it to find if the object has such parameter. Because if you will ask for it is

value, you will be given 0 or an empty string even if there is no such parameter

Clear() – reset the object information
Synopsis void Clear()
Input parameters None
Return value None
Description Clears binary map and transformed image, removes all assigned parameters
Usage Use it to clear the description of the object

GetNameAt(int) – name of the parameter
Synopsis std::string GetNameAt(int iIndex)
Input parameters iIndex – index at which the name of the parameter should be taken
Return value Returns the string with the parameter name
Description Returns the string with the parameter name given its index
Usage Use it to retrieve the name of saved parameter by index. Usually used to list all

parameters saved for the object

GetValueAt (int) – name of the parameter
Synopsis std::string GetValueAt(int iIndex)
Input parameters iIndex – index at which name of the parameter should be taken
Return value Returns the string with the value
Description Returns the string with the value at given its index
Usage Use it to retrieve the value of the parameter at given its index. It is the same as to

use GeValue(GetNameAt(iIndex))

A.3.7 CSJObjectInfoList

class CSJObjectInfoList
#include “SJObjectInfoList .h”
Description Stores a list of objects (class CSJObjectInfo)
Usage Used to manage the list of CSJObjectInfo classes.

Class member functions:

CSJObjectInfoList() – default constructor
Synopsis CSJObjectInfoList()

73

Input parameters None
Return value None
Description Default constructor, which initializes all variables in the class
Usage Called automatically

~CSJObjectInfoList() – destructor
Synopsis virtual ~ CSJObjectInfoList()
Input parameters None
Return value None
Description Takes care of cleaning the memory
Usage Called automatically

Add(CSJObjectInfoList) – adding a new object to the list
Synopsis void Add(CSJObjectInfoList newInfo)
Input parameters newInfo – information about the object to be added
Return value None
Description Adds a new object to the list, by copying it into internal structure
Usage Once used, the pointers obtained with GetObjectInfo() could be not valid

Delete(unsigned int) – deleting the image
Synopsis void Delete(unsigned int iIndex=0)
Input parameters iIndex – index of the object to be removed
Return value None
Description Deletes the object with a given index if one exists
Usage Use it to remove an object description from the list

GetLength() – number of objects in the list
Synopsis int GetLength()
Input parameters None
Return value Returns the number of objects added to the list
Description Returns the number of objects added to the list
Usage Use it to find out what is a valid range of indices for GetObjectInfo() or Delete()

GetObjectInfo(unsigned int) – get a stored object infromation
Synopsis CSJObjectInfoList* GetImage(unsigned int iIndex)
Input parameters iIndex – index of object to be returned
Return value Returns the pointer to the object stored in the memory
Description Returns the pointer to the object stored in the memory
Usage Use it to retrieve the object stored in the list

Clear() – clears the list
Synopsis void Clear()
Input parameters None
Return value None
Description Removes all stored objects
Usage Use it to remove all objects from the memory

A.3.8 CSJSpecimen

class CSJSpecimen
#include “SJSpecimen.h”
Description Class encapsulates the information about the specimen used to analyze
Usage Used to transfer and save all required information between plug-ins and the GUI

74

Class member functions:

CSJSpecimen() – default constructor
Synopsis CSJSpecimen()
Input parameters None
Return value None
Description Default constructor, which initializes all variables in the class, and clears them
Usage Called automatically

~CSJSpecimen () – destructor
Synopsis virtual ~ CSJSpecimen()
Input parameters None
Return value None
Description Takes care of cleaning the memory
Usage Called automatically

operator=(CSJSpecimen&) – assignment operator
Synopsis CSJSpecimen &operator=(CSJSpecimen& fromobj)
Input parameters fromobj – specimen to make this object to be equal to
Return value Own address
Description Assignment operator
Usage Use it to make a copy of the object

GetNumberOfLayers() – number of images in the Specimen
Synopsis int GetNumberOfLayers()
Input parameters None
Return value Returns the number of images added to the specimen
Description Returns the number of images added to the specimen
Usage Use it to find how many images are saved for this class

GetWidthOfLayer() – width of the images
Synopsis int GetWidthOfLayer()
Input parameters None
Return value Returns the width of the images
Description Returns the width of the images
Usage Use it to find quickly the width of the saved images (all of them in general should

have the same width, but the width of the first one is returned)

GetHeightOfLayer() – height of the images
Synopsis int GetHeightOfLayer()
Input parameters None
Return value Returns the height of the images
Description Returns the height of the images
Usage Use it to find quickly the height of the saved images (all of them in general should

have the same height, but the height of the first one is returned

GetImageList() – list of the images
Synopsis CSJImageList* GetImageList()
Input parameters None
Return value Returns the pointer to the list of images
Description Returns the pointer to the list of images stored for the specimen
Usage Use it to get the direct access to the stored images

GetTempImages() – list of the temporary images
Synopsis CSJImageList* GetTempImages ()
Input parameters None

75

Return value Returns the pointer to the list of temporary images
Description Returns the pointer to the list of temporary images stored for the specimen
Usage Use it when you want to save something for displaying, but it is not going to

participate in the processing. Was made to show the transformations in different
processing steps.

GetObjects() – object information
Synopsis CSJObjectInfoList* GetObjects()
Input parameters None
Return value Returns the pointer to the list of information about objects
Description Returns the pointer to the list of information about objects saved for the specimen
Usage Use it to get the direct access to the object information

GetVars() – global variables and parameters
Synopsis CSJObjectInfo* GetVars()
Input parameters None
Return value Returns the pointer to the global list of parameters
Description This list allows storing of the parameters to pass them from one plug-in to

another.
Usage Use it to save the information in one plug-in and retrieve it in another one.

GetIniFile() – configuration file
Synopsis CSJIniFile* GetIniFile()
Input parameters None
Return value Returns the pointer to the configuration file used to execute the plug-ins
Description Gives you the access to the configuration file
Usage Use it to see the saved configuration of the plug-ins

ReportProgress(int,float) – reporting status
Synopsis BOOL ReportProgress(int iStage,float fPercentage)
Input parameters iStage – stage of the process , possible values are SJ_PLGUIN_TYPE_ACQ,

SJ_PLGUIN_TYPE_OBJ_SEP, SJ_PLGUIN_TYPE_DISPLAY,
SJ_PLGUIN_TYPE_DATABASE, SJ_PLGUIN_TYPE_FEATURE
fPercentage – percentage of completeness

Return value true – in the case of successes
false – otherwise

Description Reports the progress of the performance (displayed in GUI), the first parameter
says what is the state of the system and the second shows the percentage of the
progress.

Usage Use it in your plug-in to report the progress of the operation

SetReportVars(int*,float*) – setting report variables
Synopsis void SetReportVars(int* piStage, float* pfProgress)
Input parameters piStage – pointer to the integer value where the current stage will be stored

pfProgress – pointer to the float value where the current percentage will be stored
Return value None
Description Sets the pointer to the variables which are used for ReportProgress() function
Usage Use it in your GUI part of the system, to have variables to which the report will be

saved. The GUI could update it is indicators according to thsese values

IsLogEmpty() – checks if there are messages in the log queue
Synopsis bool IsLogEmpty()
Input parameters None
Return value true – if there are messages

false – otherwise
Description Shows if there are undeceived messages in the log

76

Usage Use it in your GUI part of the system, to check if you need to receive a new
messages for the log

AddLogMessage(std::string) – add a log message
Synopsis void AddLogMessage(std::string str)
Input parameters str – string with the log message
Return value None
Description Adds a new message to the end of the log messages queue
Usage The plug-ins should use this function to send a log message to the main GUI

program

GetLogMessage() – receive a log message
Synopsis std::string GetLogMessage()
Input parameters None
Return value Returns the oldest log message
Description Function retrieves the oldest log message and removes it from the log queue
Usage Use it in your GUI part of the system, to update the log information. Use the loop

while(!Specimen.IsLogEmpty()) to receive all log messages

SetAbortVar(bool*) – setting abort variable
Synopsis void SetAbortVar(bool* pyAbort)
Input parameters pyAbort – pointer to the variable of type bool for abort status
Return value None
Description Sets the pointer to the variable which is used to abort the processing
Usage Use it in your GUI, so the user could abort the operation from it. All plug-ins

should check IsAborted().

IsAborted() – check if abort is required
Synopsis bool IsAborted()
Input parameters None
Return value true – if Abort() function was called, or main GUI requires the abort of the

operation
false – otherwise

Description Checks the status of the execution
Usage Use it whenever you want to check if execution should be aborted

Abort() – aborting execution
Synopsis void Abort()
Input parameters None
Return value None
Description Sets the abort state for the execution
Usage Use it when you want the execution to be stopped. The plug-ins should interrupt

their execution if IsAbort() returns true

Reset() – reseting class variables
Synopsis void Reset()
Input parameters None
Return value None
Description Resets all variables, clears all images, deletes all object descriptions
Usage Use it to clear all information from the class

77

A.3.9 CSJIniFile

class CSJIniFile
#include “SJIniFile.h”

Description Class to read, write and access information from ini files

Usage Used to save all required information for the plug-ins setup. Note that contents of
the ini file is read at once into memory on the call of Read() function, and all
changes (addition, changing, deleting parameters) will be reflected in the ini file
only after the call of Write() function. Comments are not supported in the ini files,
they will be lost after Write() is called.
Notation: Key – part of the ini file in [this key name]
Variable – part of the ini file in format: variable_name=variable_value
Section – part of the ini file from one Key (including this key) to another key with
all variables in between. The only key included into the section serves as the
identifier of the section. It is not allowed to have two sections with the same keys;
they will be merged on loading. All values are stored as strings and can be
retrieved as strings, which then can be converted to double or integer values. To
create a section you have to write any variable to this section.

Class member functions:

CSJIniFile() – default constructor
Synopsis CSJIniFile()
Input parameters None
Return value None
Description Default constructor, which initializes all variables in the class, and clears them
Usage Called automatically

~CSJIniFile() – destructor
Synopsis virtual ~CSJIniFile()
Input parameters None
Return value None
Description Takes care of cleaning the memory
Usage Called automatically

SetPath(std::string) – set the ini file
Synopsis void SetPath(std::string strNewPath)
Input parameters strNewPath – complete path to the file, which should be read
Return value None
Description Sets the path for the ini file to be read on Read() function or written on Write()

function. If the file does not exist it will be created when Write() is called
Usage Use it before you call Read() or Write() functions. You can use one name to

Read() the file and then the other one for Write(). This will create a new file with
the contents of the first one

ReadFile() – load ini structure
Synopsis bool ReadFile()
Input parameters None
Return value true – if file was successfully read

false – otherwise
Description Reads the ini file into internal representation
Usage Use it to load the information of the ini file

WriteFile() – creates\updates the ini file
Synopsis void WriteFile()

78

Input parameters None
Return value None
Description Writes the information from the memory into file
Usage Use it to update the information in the ini file

Reset() – reset contents
Synopsis void Reset()
Input parameters None
Return value None
Description Removes all section from the ini file
Usage Use it to delete all sections and parameters of the ini file

GetNumKeys() – get number of keys in the ini file
Synopsis ini GetNumKeys()
Input parameters None
Return value Returns the number of keys stored in the ini file
Description Returns the number of keys stored in the ini file
Usage Use it to find how many keys are currently created

GetNumValues(std::string) – get the number of variables in the section
Synopsis int GetNumValues(std::string strKeyNa me)
Input parameters strKeyName – key name for the section
Return value Returns the number of variables for the section
Description Returns the number of variables for the section
Usage Use it to find out how many variables the section has

GetValue(std::string,std::string) – get the value of the variable
Synopsis std::string GetValue(std::string strKeyName, std::string strVarName)
Input parameters strKeyName – key name for the section

strVarName – name of the variable
Return value Returns the value of variable as a string
Description Returns the value of variable as a string
Usage Use it to get the value of the variable

GetValueI(std::string,std::string) – integer value of a variable
Synopsis int GetValueI(std::string strKeyName, std::string strVarName)
Input parameters strKeyName – key name for the section

strVarName – name of the variable
Return value Returns the value of variable as an integer
Description Returns the value of variable as an integer if it was saved as integer or double
Usage Use it to get the value of the variable

GetValueF(std::string,std::string) – double value of a variable
Synopsis Double GetValueF(std::string strKeyName, std::string strVarName)
Input parameters strKeyName – key name for the section

strVarName – name of the variable
Return value Returns the value of variable as an double
Description Returns the value of variable as an double if it was saved as integer or double
Usage Use it to get the value of the variable

SetValue(std::string,std::string,std::s tring,bool) – set a value of the variable
Synopsis bool SetValue(std::string strKeyName, std::string strVarName, std::string

strValue, bool yCreate = true)
Input parameters strKeyName – key name for the section

strVarName – name of the variable
strValue – value of the variable

79

yCreate – flag telling if the key should be created if it does not exist
Return value true – if the variable was created or changed

false – if the variable does not exist and yCreate is false
Description Changes or creates the value of the variable in the given section
Usage Use it to change or create a new variable of type string

SetValueI(std::string,std::string,int,bool) – set an integer value of the variable
Synopsis bool SetValueI(std::string strKeyName, std::string strVarName, int iValue, bool

yCreate = true)
Input parameters strKeyName – key name for the section

strVarName – name of the variable
iValue – value of the variable to set
yCreate – flag telling if the key should be created if it does not exist

Return value true – if the variable was created or changed
false – if the variable does not exist and yCreate is false

Description Changes or creates the value of the variable in the given section
Usage Use it to change or create a new variable

SetValueF(std::string,std::string,double,bool) – set a double value of the variable
Synopsis bool SetValueI(std::string strKeyName, std::string strVarName, double dValue,

bool yCreate = true)
Input parameters strKeyName – key name for the section

strVarName – name of the variable
dValue – value of the variable to set
yCreate – flag telling if the key should be created if it does not exist

Return value true – if the variable was created or changed
false – if the variable does not exist and yCreate is false

Description Changes or creates the value of the variable in the given section
Usage Use it to change or create a new variable

DeleteValue(std::string,std::string) – remove the variable from the section
Synopsis bool DeleteValue(std::string strKeyName, std::string strVarName)
Input parameters strKeyName – key name for the section

strVarName – name of the variable
Return value true – if the variable was deleted

false – if the variable does not exist
Description Removes the variable from the section
Usage Use it if you do not want this variable to be present in the ini file

HaveKey(std::string) – if the section exists
Synopsis bool HaveKey(std::string strKeyName)
Input parameters strKeyName – name of the key
Return value true – if there is a section with such key

false – otherwise
Description Function says if there is such a section in the ini file
Usage Use it to find out if such a section is defined in the ini file

HaveVariable (std::string,std::string) – if the variable exists
Synopsis bool HaveVariable(std::s tring strKeyName, std::string strVarName)
Input parameters strKeyName – key name for the section

strVarName – name of the variable
Return value true – if there is such a variable

false – otherwise
Description Function says if there is such variable in the section
Usage Use it to find out if such a variable exists in the section

80

GetVarName(std::string,int) – name of the variable
Synopsis std::string GetVarName(std::string strKeyName,unsigned int iIndex)
Input parameters strKeyName – key name for the section

iIndex – index of the variable in the section
Return value Returns the name of the variable at given index
Description Function returns the name of the variable at given index
Usage Use it if you want to print out all variables in the section

GetKeyName(int) – name of the section
Synopsis std::string GetKeyName(unsigned int iIndex)
Input parameters iIndex – index of the section in ini file
Return value Returns the name of the section at given index
Description Function returns the name of the section at given index
Usage Use it if you want to print out all sections in the ini file

DeleteKey(std::string) – delete section
Synopsis bool DeleteKey(std::string strKeyName)
Input parameters strKeyName – key name for the section
Return value true – if there is a section with such section

false – otherwise
Description Removes the section with the key and all variables
Usage Use it if you want to get rid of the section and all its variables

GetPath() – current ini file
Synopsis std::string GetPath()
Input parameters None
Return value Returns the path and the name of the ini file
Description Returns the path set with the last SetPath() command
Usage Use it if you want to know where function Write() will write the ini structure

81

APPENDIX B

INTERFACE FUNCTION DESCRIPTION

The header files with the functions are: MainLoop.h, Processing.h, Utils.h;

MainLoop.h header file contains two functions: MainLoop and ResearchLoop. These functions

take care of the flow of the operation in two modes: Normal Mode and Research Mode. Processing.h

contains some processing routines. Utils.h contains the utility routines.

B.1 Normal Mode

This mode serves for the normal execution of the configuration file when the data is acquired and

processed. User has minimum interaction with the program at this mode. The system works automatically.

The plug-ins still can ask for some information. The function for the Normal Mode is decleared in

ManiLoop.h.

Synopsis int MainLoop(CSJSpecimen &Specimen, tagSJProcAddresses &prAddr, WORD
wScanNum=1)

Input parameters Specimen – specimen object to use in the system
prAddr – structure with the pointers to the functions from loaded plug-ins
wScanNum – number of scans to perform (0 – infinite loop) default is 1

Return value Returns one of the following:
ML_FINISHED – finished correctly;
ML_USER_INTERRUPTED – user interuption
ML_BAD_PROC_ADDR – bad pointer to the function in the plug-in is given

This structure should be passed to the MainLoop with addresses of functions loaded from the

plug-ins.

Function types:

typedef int(*fntGetInfo)(std::string&);
typedef int(*fntSetupForDll)(const char*);
typedef int(*fntGetType)();
typedef int(*fntAcquire)(CSJSpecimen&,int);
typedef int(*fntSeparate)(CSJSpecimen&);

82

typedef int(*fntAnalyze)(CSJSpecimen&);
typedef int(*fntDisplay)(CSJSpecimen&);
typedef int(*fntInit)(CSJSpecimen&);
typedef int(*fntDone)(CSJSpecimen&);
typedef int(*fntExtractFeature)(CSJSpecimen&);

Structure for saving plug-in addresses:

const int MAX_PLUGINS = 120;
struct tagSJProcAddresses{
 fntAcquire Acquire;
 fntDisplay Display,
 Update;
 fntSeparate Separate;
 fntAnalyze Analyze;
 fntInit AcqInit,
 SepInit,
 AnInit,
 DispResearchInit,
 DispInit;
 fntDone AcqDone,
 SepDone,
 AnDone,
 DispResearchDone,
 DispDone;
 fntSetupForDll AcqSetup,
 SepSetup,
 AnSetup,
 FeatureSetup[MAX_PLUGINS];
 int iTotalFeatures;
 fntExtractFeature Feature[MAX_PLUGINS];};

B.2 Research Mode

This mode allows the configuration of the plug-ins, displaying the effect of the current

configuration. It also allows stepping back to the previous plug-in setup when it is required. In this mode a

user can find the optimal setup parameters to be used in Normal Mode. It is declared in ManiLoop.h.

Synopsis ResearchLoop(CSJSpecimen &Specimen, tagSJProcAddresses &prAddr)
Input parameters Specimen – specimen object to use in the system

prAddr – structure with the pointers to the functions from loaded plug-ins (see
description in section 2.4.1)

Return value Returns one of the following:
ML_FINISHED – finished correctly;
ML_USER_INTERRUPTED – user interuption
ML_BAD_PROC_ADDR – bad pointer to the function in the plug-in is given
ML_NO_DISPLAY – No Update function in the display module

In this mode the system executes the setup function of the plug-in and then the plug-in itself. If the

return value from the plug-in function is non-zero, then the same sequence of operations is performed on

83

the next plug-in. In the case when a zero was returned, the setup function for the current plug-in is executed

again. If the setup function returns zero then step back to the previous plug-in is performed. The order of

the plug-ins is as follows:

1. Acquisition plug-in;
2. Object Separation plug-in;
3. Feature plug-ins according to their order;
4. Database plug-in;
5. Display plug-in;

For each plug-in the following sequence is called:

1. Setup of the plug-in;
2. If step 1 returns 0 value go back to the previous plug-in (if there is no previous plug-in, exit the

procedure);
3. Execute the plug-in;
4. Show the result by using Update function of Display plug-in;
5. If step 4 returns 0 value repeat from step 1, otherwise go to the next plug-in.

Use Research Mode when you are not sure what parameters should be used for the plug-ins.

B.3 Processing routines

These functions can be called by any plug-in and are designed to simplify the processing tasks.

They are declared in Processing.h.

IncreaseDepth(CSJBuffer&) – changes the depth of the buffer to two bytes per pixel
Synopsis void IncreaseDepth(CSJBuffer& buf)
Input parameters buf – buffer object to be modified
Return value None
Description Change the depth of the given buffer from one byte per pixel to two bytes per

pixel.
Usage Use it when you want to be able to store wider range of values in the buffer. One

byte per pixel gives the range from 0 to 0xFF, while two bytes per pixel gives the
range from 0 to 0xFFFF.

Threshold(CSJBuffer,int,WORD,WORD) – thresholds the buffer
Synopsis int Threshold(CSJBuffer &Buf,int iThreshold, WORD wUp=0xFFFF, WORD

wDown=0)
Input parameters Buf – buffer object to be modified

iThreshold – value of the threshold
wUp – value to be assigned if the pixel value is greater or equal to the threshold,
default is the largest possible value for the buffer
wDown – value to be assigned if pixel is less then threshold, default is 0

Return value 1 – if successful
0 – otherwise

Description Thresholds the values in the buffer.
Usage Use it when you want to make a buffer with only two values in it.

StretchVals(CSJBuffer&) – stretch values in the buffer
Synopsis int StretchVals(CSJBuffer &Buf)

84

Input parameters Buf – buffer object to be modified
Return value 1 – if successful

0 – otherwise
Description Maps the values from the region [min in the buffer, max in the buffer] to the

region [0 max possible value in the buffer]
Usage Use it when you want to use the whole dynamic range of the buffer

Connectivity(CSJBuffer*) – labeling of the blobs
Synopsis WORD Connectivity(CSJBuffer *BufBlobs)
Input parameters BufBlobs – pointer to the binary buffer to label.
Return value Returns number of unique labels assigned to the buffer
Description Labels ??? pixels in the buffer using 4-neighbor method. The maximum number

of the labels, which could be assigned is 0xFFFF
Usage Use it on the thresholded image to get blobs labeled

Find_Blobs(CSJObjectInfoList*,CSJBuffer*,bool) – finding blobs
Synopsis int Find_Blobs(CSJObjectInfoList *ObjectList, CSJBuffer *BufBlobs,

bool yExcludeSE=true)
Input parameters ObjectList – pointer to the list to put the information about the objects

BufBlobs – pointer to the buffer with the labeled blobs
yExcludeSE – if true blobs with the width or height equal to 1, or the blobs
touching the edge will not be included into the list

Return value 1 – if successful
0 – otherwise

Description Fills the list of objects with the information about the bounding boxes of the
objects

Usage Use it after you perform the connectivity on the buffer to get the information
about blobs.

Change_Value(CSJBuffer&,WORD,WORD) – changing value
Synopsis int Change_Value(CSJBuffer &Buf, WORD wOld, WORD wNew)
Input parameters Buf –buffer to be modified

wOld – value to change
wNew – new value to assign to the pixels which has wOld value

Return value 1 – if successful
0 – otherwise

Description Changes the given value of the buffer to a new one.
Usage Use it if you want to change one value in the buffer to another one.

B.4 Utility routines

These functions can be called by any plug-in and are designed to simplify data managing. They

are declared in Utills.h.

Format(const char *fmt, ...) – formatting string
Synopsis std::string Format(const char *fmt, ...)
Input parameters fmt – string with the format control

… – optional arguments (see help for C function printf() for more information)
Return value Returns the formatted string
Description Formats the string given the format control string and parameters
Usage Use when you need to have a string of the certain format. See C help for printf()

function

85

Round(double) – rounding a number
Synopsis int Round(double dX);
Input parameters dX – number to be rounded
Return value Returns the rounded number
Description Rounds the given number, if the fractional part of the number is greater then 0.5

then the next larger integer is returned. Otherwise just the integer part is returned
Usage Use it to round a number

86

APPENDIX C

PLUG-IN INTERFACING

This appendix describes the interfacing between the plug-ins. There are 5 types of the plug-ins:

Acquisition, Object separation, Feature extraction, Database and Display. Each configuration of the system

must have one Acquisition plug-in. Only one per configuration plug-in of Object separation, Database and

Display is allowed. But there could be 0 or more Feature extraction plug-ins. All plug-ins should be loaded

into the memory and the addresses of the functions should be supplied to the interface (See the attached CD

for examples and documentation)

C.1 Common functions for all plug-ins

The described function should be exported from all types of the plug-ins and usually are used by

GUI, because the algorithms supplied by the system do not call them internally.

GetType() – type of the plug-in
Synopsis int GetType()
Declaration typedef int(*fntGetType)()
Input parameters None
Return value Returns the type of the plug-in
Description Returns the type of the plug-in. The supported values are:

SJ_PLGUIN_TYPE_ACQ, SJ_PLGUIN_TYPE_OBJ_SEP,
SJ_PLGUIN_TYPE_DISPLAY, SJ_PLGUIN_TYPE_DATABASE,
SJ_PLGUIN_TYPE_FEATURE

Usage Only the GUI uses this function to get the type of the plug-in.

GetInfo(std::string&) – information about plug-in
Synopsis int GetInfo(std::string& Info)
Declaration typedef int(*fntGetInfo)(std::string&)
Input parameters Info – address of the string to which information will be stored
Return value Returns the type of the setup for this plug-in
Description Function modifies the supplied string to show the information about the name of

the plug-in and its version. Returned value is a type of the setup for the plug-in,
supported values are: SJ_MFC_DIALOG_SETUP, SJ_NO_SETUP_DIALOG
SJ_MFC_DIALOG_SETUP – says that plug-in has dialog box to ask user about
the parameters;

87

SJ_NO_SETUP_DIALOG – plug-in does not have any dialog for the setup
Usage This function is used by the GUI only to find out whether it should call SetupDll()

function

SetupDll(const char*) – setup the dll
Synopsis int SetupDll(const char *iniName)
Declaration typedef int(*fntSetupForDll)(const char*)
Input parameters iniName – pointer to the first character of the string with the name of the ini file

where the configuration should be saved
Return value non 0 value – if setup was successful

0 – in the case of problem
Description Function should set up all parameters for the configuration. It manages

communicating with the user and saving the values to the ini file. These values
then will be used by Init() function

Usage This function is used only by the GUI to set up the configuration file

The following functions does not apply to the feature extraction plug-ins:

Init(CSJSpecimen&) – initializing
Synopsis int Init(CSJSpecimen &Specimen)
Declaration typedef int(*fntInit)(CSJSpecimen&)
Input parameters Specimen – address of the CSJSpecimen object, which is passed to all plug-ins
Return value non 0 value – if call is successful

0 – in the case of any problem
Description Function is supposed to initialize the internal variables and is called once per

session. The session is ended with the call of Done()
Usage Put routines which should be called only once per session in this procedure (Like

initializing hardware registers if any). This function is called internally

Done(CSJSpecimen&) – closing
Synopsis int Done(CSJSpecimen &Specimen)
Declaration typedef int(*fntDone)(CSJSpecimen&)
Input parameters Specimen – address of the CSJSpecimen object, which is passed to all plug-ins
Return value non 0 value – if call is successful

0 – in the case of problem
Description Function is supposed to clear internal variables and is called once per session. The

function is the opposite of Init(). And it is called last in the session
Usage Use it if you have some routines which is called only once per session. This

function is called internally

C.2 Acquisition plug-in

This plug-in is responsible for loading the image data into CSJSpecimen object. It interfaces the

hardware or the operating system routines with the rest of the system.

Functions to be exported for this type of the plug-in are as follows:

Acquire(CSJSpecimen&,int) – acquiring the data
Synopsis int Acquire(CSJSpecimen &Specimen,int iNum)
Declaration typedef int(*fntAcquire)(CSJSpecimen&,int)
Input parameters Specimen – address of the CSJSpecimen object, which is passed to all plug-ins.

All data should be acquired and saved into image list of this object
iNum – iteration of acquisition

Return value non 0 value – if call is successful

88

0 – in the case of problem
Description Function is responsible for the acquiring data. Data is saved in the Specimen.
Usage This procedure should call all routines to acquire the data. iNum variable is used

for a continues mode of work to tell at what iteration the system is

C.3 Display plug-in

This plug-in is responsible for the displaying the results of the processing. Whether it should be a

new image or some text data, or both at the same time. The result of the processing is stored in the

Specimen object, which is passed as a parameter. This plug-in is interfacing the output devices with the

system.

Functions to be exported for this type of the plug-in are as follows:

Display(CSJSpecimen&) – displaying the result
Synopsis int Display(CSJSpecimen &Specimen)
Declaration typedef int(*fntDisplay)(CSJSpecimen&)
Input parameters Specimen – address of the CSJSpecimen object, which is passed to all plug-ins.

All data is taken from image the list or the variable list
Return value non 0 value – if call is successful

0 – in the case of problem
Description Function is responsible for the displaying of the data
Usage This procedure should call all routines to display the data. It is called internally

and could interact with a user or just somehow save the data

Update(CSJSpecimen&) – updating the result
Synopsis int Display(CSJSpecimen &Specimen)
Declaration Typedef int(*fntDisplay)(CSJSpecimen&) (the same as for Display function)
Input parameters Specimen – address of the CSJSpecimen object, which is passed to all plug-ins.

All data is taken from image list or variable list
Return value non 0 value – if call is successful

0 – otherwise
Description Function is responsible for the displaying of the data.
Usage This procedure should call all routines to display the data during Research Mode.

It is called internally and could interact with a user or just somehow save the data

ResearchInit(CSJSpecimen&) – initializing Research Mode
Synopsis int ResearchInit(CSJSpecimen &Specimen)
Declaration typedef int(*fntInit)(CSJSpecimen&)
Input parameters Specimen – address of the CSJSpecimen object, which is passed to all plug-ins.

Ini structure is saved in this object and function should use it
Return value non 0 value – if call is successful

0 – otherwise
Description Function is supposed to initialize tge internal variables and is called once per

session. The session is ended with the call of ResearchDone() function
Usage Put routines which should be called only once per session in this procedure (Like

initializing hardware registers if any)

ResearchDone(CSJSpecimen&) – closing Research Mode
Synopsis int ResearchDone(CSJSpecimen &Specimen)
Declaration Typedef int(*fntDone)(CSJSpecimen&)
Input parameters Specimen – address of the CSJSpecimen object, which is passed to all plug-ins.

89

Ini structure is saved in this object and function should use it.
Return value non 0 value – if call is successful

0 – otherwise
Description Function is supposed to clear the internal variables and is called once per session.

The function is the opposite of ResearchInit() function. And it is called last in the
session

Usage Use it if you have some routines, which should be called only once per session

C.4 Object separation plug-in

This plug-in is responsible for the image segmentation and the object detection. It is called after

the acquisition and should find the location of the objects.

Function to be exported for this type of the plug-in is:

Separate(CSJSpecimen&) – finding objects
Synopsis int Separate(CSJSpecimen &Specimen)
Declaration typedef int(*fntSeparate)(CSJSpecimen&)
Input parameters Specimen – address of the CSJSpecimen object, which is passed to all plug-ins.

All data is taken from the image list or the variable list
Return value non 0 value – if call is successful

0 – otherwise
Description Function is responsible for finding the objects in the supplied data
Usage This procedure should call all routines to find the objects

C.5 Feature Extraction plug-in

The plug-in is responsible for the detecting a certain feature (or a set of features) in the detected

objects. Also it could create new objects or delete existing ones. The information is saved into the

Specimen object. It is responsibility of the plug-in to perform its operations on all objects.

Function to be exported for this type of the plug-in is:

ExtractFeature(CSJSpecimen&) – performing an operation
Synopsis int ExtractFeature(CSJSpecimen &Specimen)
Declaration typedef int(*fntExtractFeature)(CSJSpecimen&)
Input parameters Specimen – address of the CSJSpecimen object, which is passed to all plug-ins.

All data is taken from the image list or the variable list
Return value non 0 value – if call is successful

0 – otherwise
Description Function is responsible for performing a predefined procedure on all objects in the

specimen
Usage Should perform some operations on the data, extracting the features of the objects,

splitting them, deleting them, finding new ones and so on

90

C.6 Data base plug-in

This plug-in is responsible for making a final decision about the type of the objects found in the

specimen.

Function to be exported for this type of the plug-in is:

Analyze(CSJSpecimen&) – assigning the labels to the objects
Synopsis int Analyze(CSJSpecimen &Specimen)
Declaration typedef int(*fntAnalyze)(CSJSpecimen&)
Input parameters Specimen – address of the CSJSpecimen object, which is passed to all plug-ins.

All data is taken from image list or variable list
Return value non 0 value – if call is successful

0 – otherwise
Description Function is responsible for performing a predefined procedure on all the objects in

the specimen
Usage Usually assigns one of the predefined labels to each object. This data is then

displayed by the Display plug-in. It should utilize the data supplied by the feature
extraction plug-ins to make the decision

91

APPENDIX D

DESIGNED PLUG-IN DESCRIPTION

This appendix contains the description of the plug-ins.

D.1 DummyAcq plug-in

This plug-in uses the ini files with extension “des” (DEScription) of the following format: The

required section for the description file is [Images] with the variable NumOfImages.

[Images]
NumOfImages=X

NumOfImages contains the number of images to be loaded during the acquisition. There should be

the number of the sections [ImageXXX], where XXX is an integer from 0 to NumOfImages-1. Each

section should have the variable Path=path_to_the_picture. This is the location of the TIFF image file to

load.

Example of a description file:

[Images]
NumOfImages=1
[Image0]
Path=C:\users\SJ\Thesis \Samples\c_15_2.tif

Example with more images:

[Images]
NumOfImages=3
[Image0]
Path=C:\users\SJ\Thesis \Samples\1.tif
[Image1]
Path=C:\users\SJ\Thesis \Samples\2.tif
[Image2]
Path=C:\users\SJ\Thesis \Samples\3.tif

92

The setup dialog box of the plug-in is shown in Figure D.1

Figure D.1 Setup dialog box of DummyAcq plug-in

With the button Browse you can choose the description file (described latter). Also a user defines

if the images should be inverted. Press OK button to save the setup, or Cancel to discard the changes.

D.2 FromFileAcq plug-in

This plug-in was designed to load the information from TIFF image file. It is useful when you

want to test a specific configuration with a synthetic data or if you need to emulate the hardware

acquisition. When the module has to acquire the data, the plug-in shows the standard file open dialog box

to open an image file. A user has to choose the file and it will be used as the data coming into the system.

Once the file is chosen, program will ask the user if he/she wants this image to be inverted, sometimes it

can be required by the Object Separation plug-in. The supported image format is TIFF. You can create

images in any image editor (like Potoshop®[13]) program and save it as a TIFF image. There is no

limitation for the size of the image, except the memory of the computer.

D.3 SimpleDisplay plug-in

This plug-in can be used to see most of the information stored in the Specimen object supplied to

the Display plug-in. Though it does not provide some specific functionality, which could be required by

certain tasks (like saving the data to the disk). It easily can be used for the exploration of the problem and

the demonstration of the implementation for a display plug-in.

The main window of the SimpleDis play plug-in is shown in Figure D.2

93

Figure D.2 Main window of SimpleDisplay

Explanation of controls:

1. Area with the image information;

2. The set of controls to choose the image. If more then one image is available. The label shows the

number of shown image versus the total number of images. Depending on the control 3 it relates to the

temporary images or working images;

3. Processing checkbox – if checked the images added by the plug-ins during the processing are shown;

4. The set of controls to navigate through the objects. The label shows the number of the current object

versus the total number of objects. The current object is highlighted with a red rectangle around the object;

5. Fit checkbox – if set the image will be shown completely within the image area. If unchecked the real

size of the image is used and to see parts of the images that are not visible, a user should use scrollbars 13

and 14;

6. All objects checkbox – if set a blue rectangle around each object is shown;

94

7. Zoom controls – the label shows current zoom. In and Out buttons zoom in and zoom out respectively.

1:1 button resets zoom to 1;

8. Center at object button – set the scroll positions and zoom to show the selected object;

9. Show transformed button– shows the transformed image of the object if available;

10. Histogram button – displays the dialog box to pick a parameter to build a histogram for;

11. Information button – displays all objects variables in one list;

12. Delete markers button – removes all markers;

13. Vertical scroll bar – use it if you want to see other areas of the image;

14. Horizontal scroll bar – use it if you want to see other areas of the image;

15. Information about the current object;

16. Cancel button – closes the dialog box and returns zero (used during Research Mode)

17. Ok button – closes the dialog box and returns non-zero;

18. Red rectangle shown to highlight the current object;

19. Blue rectangles highlight objects in the image;

20. Green round mark – an additive mark (if you want to count something or just mark);

To add the additive mark, double click with the left button of the mouse at the location where you

want this mark to be added. If there is a subtractive mark at this location, it will be removed and

no additive mark will be added;

21. Yellow round mark – a subtractive mark;

To the subtractive mark, double click with the right button of the mouse at the location where you

want this mark to be added. If there is an additive mark at this location, it will be removed and no

subtractive mark will be added;

The information dialog box (Figure D.3) allows anyone to see all variables saved for each object

and the global variables for the specimen.

95

Figure D.3 Information dialog box

When Histogram button is clicked, the dialog box (Figure D.4) is shown, where a user is asked to

choose the parameter for which he/she wants the histogram to be built.

Figure D.4 Choose histogram dialog box

This function looks for all numerical variables in the variable list for each object and then builds

the histogram for these variables. One special histogram type is an Image Histogram (marked with the

arrow on Figure D.4) – which allows the user to see the histogram of the image in the view area.

96

Figure D.5 Histogram window

Explanation of controls:

1. Histogram itself;

2. Maximum value of the histogram (maximum number of objects (pixels) with the same value);

3. Minimum value of the histogram (always 0);

4. Minimum value of the parameter for which the histogram is built;

5. Maximum value of the parameter for which the histogram is built;

6. Value of X and Y under the mouse cursor;

7. Value for the left selection marker;

8. Value for the right selection marker;

9. Values of the bins which are shown: xxx: yyy, where xxx – value of the parameter, yyy – number of

the objects (pixels) with this value;

10. Log scale for Y check-box – if checked Y axe of the histogram has logarithmic scale. It is useful when

the scale of the Y axis has a big range;

11. Left selection marker (it is set by the left mouse click on the histogram, could not be on the right side

of the right selection marker);

12. Right selection marker (it is set by the right mouse click on the histogram, could not be on the left side

of the left selection marker);

13. Apply to Image button – press it to see only the selected range of the objects (pixels) (which has values

in the selected region) See Figure D.6 (a) and (b);

14. Close button – closes the window;

97

(a)

(b)

Figure D.6 Original image (a) and image with selection applied (b)

D.4 Area and Center plug-ins

These are the Feature plug-ins, which calculate the area occupied by each object and the center

coordinates of each object. Area plug-in uses the binary mask of the object to find the number of the pixels

for the object. This value is stored as the information about the object in the variable with the name “Area”.

Center plug-in uses bounding rectangle of the object to find the center point of the area occupied by the

object.

D.5 MinArea and MaxArea plug-ins

These two plug-ins are the Feature plug-ins. They require Area plug-in to be used before them.

They take the value stored by Area plug-in and compare it to the defined during the setup value. If object is

less (for MinArea plug-in) or more (for MaxArea plug-in) then object is deleted. If Area plug-in was not

executed before these plug-ins, user will be asked if the execution of the rest of the plug-ins is required or

the system should halt the execution.

98

D.6 IniDB plug-in

This is a Database plug-in, used to handle fuzzy-logic with membership functions. The only

parameter, which is set during the setup, is the name of the database configuration file. The database is an

ini file with the extension dbi or ini. Database consists of 3 different parts: Membership functions for

parameters, Rules, Object descriptions.

The plug-in loads parameters, membership functions and object descriptions with the rules. Then

it loops through all objects, for each object a rule is calculated. For each parameter the value with

maximum weight is picked (Small, Medium, Large). Then this calculated rule is compared with the rules of

the objects until one matches. If no match was found “unknown” label is assigned. If there is no value

assigned for the parameter in the rule, then it is not considered during comparison.

Object description format:

A key section should have the name [Obj%d], where %d is an integer (Examples [Obj0],

[Obj1],[Obj345]). Numb ers should be sequential and start from 1. The maximum number of objects is

32,000. Parameters required for this section are Name – the label to be assigned to the object, Rules – the

number of rules defining this object (Coma “,” separates rules). The following is an example of the object

description:

[Obj1]
Name=Oligodendrocyte
Rules=55,56,64,28,1,57,281

Rules description format:

A key section should have the name [R%d], where %d is an integer (exmples [R1],[R45],[R540])

Object description refers to this number in the variable Rules. If no object has the number of the rule in its

Rules variable the rule is ignored. The maximum number of rules is 32,000 and it is the maximum number,

which could be assigned to the rule. The rule contains the values of the parameters. In the form

P%d=[Small|Medium|Large], where P%d is a section name of the parameter membership function, and it

can have one of the three values: Small, Medium or Large (case sensitive).

This is an example of the rule:

[R55]
P1=Small

99

P2=Large
P3=Small
P4=Medium
P5=Small

Parameters description format:

A key section should have the name [P%d], where %d is an integer (examples [P1],[P2],[P438]).

Numbers should be sequential and start from 1. The maximum number of objects is 32,000. Four

parameters are required in this section: Name, Small, Medium and Large. Name is the name of the feature

as it is saved in the ObjectInfo list for the object. Small – region described by two points “small 1” and

“small 2” refer to Figure D.7. First point says till what value of the parameter Small description has weight

of 1. Second point says where weight becomes 0. The weight is linearly calculated in between of these

points. Medium region is described by 4 points: “medium 1”, “medium 2”, “medium 3” and “medium 4”.

Large region: “large 1”, “large 2”. All numbers are separated by comas “,”

Figure D.7 Membership functions

This is an example of the parameter section for the Figure D.7:

[P1]
Name=Name_for_this_feature
Small=150,250
Medium=100,200,400,500
Large=400,500

The following is an example of the complete database used for human brain cell recognition:

100

[P1]
Name=Area
Small=150,270
Medium=100,270,400,500
Large=400,500

[P2]
Name=dDistinctness
Small=0.65,0.72
Medium=0.71,0.73,0.78,0.83
Large=0.78,0.83

[P3]
Name=dEntropy
Small=0.019,0.0206
Medium=0.019,0.02065,0.029,0.032
Large=0.03,0.032

[P4]
Name=dRMax
Small=7.5,10
Medium=7.3,7.7,12.5,15
Large=12.6,15

[P5]
Name=dRoundness
Small=0.75,0.85
Medium=0.70,0.75,0.8,0.85
Large=0.75,0.85

[Obj1]
Name=Oligodendrocyte
Rules=55,56,64,28,1,57,281

[Obj2]
Name=Astrocyte
Rules=2,3,122,131,123,121,1221,1212

[Obj3]
Name=Neuron
Rules=189,180,207,215,206,216,188

[R55]
P1=Small
P2=Small
P3=Small
P4=Medium
P5=Small

[R57]
P1=Small
P2=Large
P3=Large
P4=Small
P5=Small

[R58]
P1=Small
P2=Large
P3=Large
P4=Small
P5=Medium

[R56]
P1=Small
P2=Large
P3=Small
P4=Small
P5=Medium

[R64]
P1=Small
P2=Large
P3=Medium
P4=Small
P5=Small

[R28]
P1=Small
P2=Medium
P3=Small
P4=Small
P5=Small

[R281]
P1=Small
P2=Medium
P3=Large
P4=Medium
P5=Medium

[R122]
P1=Medium
P2=Medium
P3=Medium
P4=Medium
P5=Medium

[R1221]
P1=Medium
P2=Small
P3=Medium
P4=Large
P5=Medium

[R2]
P1=Small
P2=Large
P3=Large
P4=Medium
P5=Medium

[R3]
P1=Medium
P2=Large
P3=Medium
P4=Medium
P5=Medium

[R131]
P1=Medium
P2=Medium
P3=Large
P4=Medium
P5=Medium

[R123]
P1=Medium
P2=Medium
P3=Medium
P4=Medium
P5=Large

[R121]
P1=Medium
P2=Medium
P3=Medium
P4=Medium
P5=Small

[R1212]
P1=Medium
P2=Small
P3=Medium
P4=Medium
P5=Large

[R189]
P1=Large
P2=Small
P3=Small
P4=Large
P5=Large

[R180]
P1=Large
P2=Small
P3=Small
P4=Large
P5=Large

[R207]
P1=Large
P2=Medium
P3=Small
P4=Large
P5=Large

[R215]
P1=Large
P2=Medium
P3=Small
P4=Large
P5=Medium

[R206]
P1=Large
P2=Medium
P3=Small
P4=Large
P5=Medium

[R216]
P1=Large
P2=Medium
P3=Small
P4=Large
P5=Large

[R188]
P1=Large
P2=Small
P3=Small
P4=Large
P5=Medium

[R1]
P1=Medium
P2=Small
P3=Small
P4=Medium
P5=Small

101

D.7 SOMDB plug-in

This is a Database plug-in. It provides the GUI to collect the data for training the self-organizing

map (SOM) and makes decisions based on this map (See Section 4.8 for description of the SOM). External

programs perform all routines. The following section describes the details.

There are 5 programs:

1. randinit.exe – program initialize the map for training;

2. vsom.exe - trains the reference vectors;

3. vcal.exe – labels the map vectors;

4. visual.exe – generates a list of coordinates corresponding to the best-matching unit in the map for

each data sample in the input data;

5. qerror.exe – calculates the average quantization error.

For more details about these programs refer to “The Self--Organizing Map Program Package

Version 3.1” [10]

D.7.1 Parameters

Various programs need various parameters. All the parameters that are required by any program

are listed below. The meaning of the parameters is obvious in most cases. The parameters can be given in

any order in the commands.

-din Name of the input data file.
-dout Name of the output data file
-cin Name of the file from which the reference vectors are read
-cout Name of the file to which the reference vectors are stored
-rlen Running length (number of steps) in training
-alpha Initial learning rate parameter. Decreases linearly to zero during training
-neigh The neighborhood function type used. Possible choices are step function

(bubble) and Gaussian (gaussian)
-topol The topology type used in the map. Possible choices are hexagonal lattice

(hexa) and rectangular lattice (rect)
-ydim Number of units in the y-direction
-xdim Number of units in the x-direction
-radius Initial radius of the training area in som-algorithm. Decreases linearly to one

during training

102

D.7.2 Format of input/output files

All data files (input vectors and maps) are stored as ASCII (American Standard Code for

Information Interchange) files for their easy editing and checking. The files that contain training data and

test data are formally similar, and can be used interchangeably. The input data is stored in ASCII-form as a

list of entries, one line being reserved for each vectorial sample. The first line of the file is reserved for

status knowledge of the entries; in the present version it is used to define the following items (these items

MUST occur in the indicated order; in data files the optional items are ignored):

1. Dimensionality of the vectors (integer, compulsory).

2. Topology type, either hexa or rect (string, optional, case-sensitive).

3. Map dimension in x-direction (integer, optional).

4. Map dimension in y-direction (integer, optional).

5. Neighborhood type, either bubble or gaussian (string, optional, case-sensitive).

Subsequent lines consist of n floating-point numbers followed by an optional class label (that can

be any string) and two optional qualifiers (see below) that determine the usage of the corresponding data

entry in training programs. The data files can also contain an arbitrary number of comment lines that begin

with '#', and are ignored. (One '#' for each comment line is needed.)

If some components of some data vectors are missing (due to data collection failures or any other

reason) those components should be marked with 'x' (replacing the numerical value). For example, a part of

a 5-dimensional data file might look like:

1.1 2.0 0.5 4.0 5.5
1.3 6.0 x 2.9 x
1.9 1.5 0.1 0.3 x

The map files produced by the program, and the user usually does not need to examine them by

hand. The reference vectors are stored in ASCII-form. The format of the entries is similar to that used in the

input data files, except that the optional items on the first line of data files (topology type, x-and y-

dimensions and neighborhood type) are now compulsory. In map files it is possible to include several labels

for each entry.

103

D.7.3 Purpose of each program

randinit.exe – This program initializes the reference vectors to random values. The vector

components are set to random values that are evenly distributed in the area of corresponding data vector

components. The size of the map is given by defining the x-dimension (-xdim) and the y-dimension (-ydim)

of the map. The topology of the map is defined with option (-topol) and is either hexagonal (hexa) or

rectangular (rect). The neighborhood function is defined with option (-neigh) and is either step function

(bubble) or Gaussian (gaussian).

Example: randinit -xdim 16 -ydim 12 -din file.dat -cout file.cod –neigh bubble -topol hexa

vsom.exe – This program trains the reference vectors using the self-organizing map algorithm.

The topology type and the neighborhood function defined in the initialization phase are used throughout the

training. The program finds the bes t-matching unit for each input sample vector and updates those units in

the neighborhood of it according to the selected neighborhood function.

The initial value of the learning rate is defined and will decrease linearly to zero by the end of

training. The initial value of the neighborhood radius is also defined and it will decrease linearly to one

during training (in the end only the nearest neighbors are trained). If the qualifier parameters (-fixed and -

weight) are given a value greater than zero, the corresponding definitions in the pattern vector file are used.

Example: vsom -din file.dat -cin file1.cod -cout file2.cod -rlen 10000 -alpha 0.03 -radius 10

qerror.exe – The average quantization error is evaluated. For each input sample vector the best-

matching unit in the map is searched for and the average of the respective quantization errors is returned.

Example: qerror -din file.dat -cin file.cod

visual.exe – This program generates a list of coordinates corresponding to the best-matching unit

in the map for each data sample in the data file. It also gives the individual quantization errors made and the

class labels of the best matching units if the latter have been defined. The program will store the three-

dimensional image points (coordinate values and the quantization error) in a similar fashion as the input

data entries are stored.

Example: visual -din file.dat -cin file.cod -dout file.vis

vcal.exe – This program labels the map units according to the samples in the input data file. The

best-matching unit in the map corresponding to each data vector is searched for. The map units are then

104

labeled according to the majority of labels 'hitting' a particular map unit. The units that get no 'hits' are left

unlabeled.

Example: vcal -din file.dat -cin file.cod -cout file.cod

D.7.4 Setup dialog box for SOMDB

The plug-in itself is a GUI, supplied for the ease of the parameters setup. During the setup user

will be asked about the location of the database file (simple ini file). After that user has an ability to set up

the parameters of the programs. Figure D.8 shows the setup dialog box.

Figure D.8 SOMDB setup dialog box

Explanation of controls:

1. Path to the SOM directory, where all executable files are located;

2. Map file name to use as a parameter for the programs;

3. User input is saved to this file;

4. List of the parameters to create a vector;

5. List of labels to be used during manual labeling;

105

6. Size of the grid, the larger is grid the better coverage of the sample space is performed but more

time is required;

7. Topology and Neighborhood function (see description of the SOM method);

8. If checked data will be saved; a user will be asked to make manual labeling and learning will be

performed;

9. Parameters of learning (see description of the SOM method);

10. Saves the setup and closes the dialog box;

11. Discards the data and closes the dialog box;

D.8 Blob separation

This is an Object Separation plug-in, which uses a simple technique to segment images and locate

objects in the images. It uses a threshold (this is the only value a user can adjust during the setup procedure)

to make a binary image, and then connectivity is performed using this binary image. I used 4-connectivety

[11], which looks for neighbors from top, left, right and bottom sides. Based on the result of connectivity

diffe rent blobs are located in the image. Originally designed to be used for bacteria counting application.

D.9 Simple Rejecter plug-in

This is a Database plug-in, which makes a decision based on the area of the blob. Minimum

allowed area is set during the setup. If object has the area less then defined, it will not be count as a valid

object and will be removed. This plug-in requires Area plug-in to be used in order to have Area feature of

the objects. The plug-in also calculates average area of the objects.

D.10 MorphologyOp plug-in.

This is a Feature extraction plug-in. The plug-in is capable of performing a sequence of erosions

and dilations on the binary map of the object. A user can set the kernel of any size or shape. The order and

the number of erosions/dilations are set during the setup. The same kernel is used for all operations. Figure

D.9 shows the setup dialog box for this plug-in.

106

Figure D.9 MorphologyOp setup dialog box

Explanations of controls:

1. Kernel is a binary two-dimensional array. Elements of one line should be separated by the coma

“,”, lines are separated by the semicolon “;”. Splitting onto lines is just for user convenience.

2. List of the operations to be performed on the object;

3. Adds the erosion to the list;

4. Adds the dilation to the list;

5. Removes the selected operation;

6. Saves the changes and closes the dialog box;

7. Discards the changes and closes the dialog box;

Each object is considered to be one blob. The sequence of the erosion and the dilations is

performed on each object. Then connectivity is performed. If more then one blob is found, parameters of

original blob are added to the new objects, and the original object is deleted.

One has to be careful when this procedure is performed. For instance, if Area was calculated and

then MorphologyOp was executed, then new blobs would have Area value of the old object, but the actual

area is smaller for each object.

D.11 AreaDivision plug-in

This is a Feature extraction plug-in. It goes through each object and if the area of the object is

larger then a given value, procedure divided this object onto a set of the smaller objects with the given

107

average area. The old object is deleted. This produces new objects of the smaller size. New objects have the

parameters of the original object. Area plug-in is required to be executed prior to this plug-in. This plug-in

was designed for bacteria counting application. A user can set two values: the average area of an object,

and the minimum area for division. When the area of the object is larger than the minimum area, then this

object is divided by the average area.

D.12 Polar plug-in

This is a Feature extraction plug-in. It does not take any parameters. The plug-in makes the polar

transform for all objects. The transformed image is saved in the Transformed member variable of the

ObjectInfo class. After that any plug-in can use the transformed image. The plug-in was designed for

automatic human brain cell recognition application.

D.13 SaveLoadObj plug-in

This is a Feature extraction plug-in. It can save all variables of the objects and variables of the

CSJSpecimen into file. Later a user can load this information, without performing all operations again. I

used this plug-in during the evaluation of the SOMDB performance. This plug-in must be included as the

last one and once all cells where found, their parameters and locations will be saved. Then one could use

just this feature plug-in to load all parameters and check how the database classifies them. This procedure

does not require any processing. During the setup a user will be asked if he wants to load or save the

information and the location of the file with information.

108

LIST OF REFERENCES

[1] Merriam-Webster online dictionary: http://www.m-w.com/

[2] A. J. Pawlak, "Automatic human brain cell recognition", Master's Thesis, September 1998

[3] R.O. Duda, P.E. Hart, D.G. Stork, “Pattern Calssification”, 2nd edition, Wiley-Interscience Publications,
2000

[4] William K. Pratt, Digital Image Processing, Second Edition, John Wiley & Sons, 1991, page 597

[5] Anil K. Jain, Fundamentals of Digital Image Processing, Prentice-Hall, 1989, page 342

[6] Erik J. DeGraaf, Personal Conversation, May 29, 1996

[7] Tomasz J. Motor, Machine Printed Character Recognition Using Multiple CMAC Neural Networks and
Polar-Log Mapping for Feature Extraction, Master’s Thesis, 1995

[8] Mark A. Abbott, A study of Polar-Log Coordinate Mapping as a Preprocessor for Image Compression,
Master’s Thesis, 1991

[9] T. Kohonen, “The Self-Organizing Map”, Proceedings of the IEEE, Vol. 78, No. 9, September, 1990,
pp. 1464-1480

[10] T. Kohonen, J. Hynninen, J. Kanga, J. Laaksonen. SOM_PAK The Self--Organizing Map Program
Package Version 3.1, Laboratory of Computer ad Information Science, Helsinki University of Technology,
Finland, 1995

[11] R. C. Gonzales, R. E. Woods, “Digital Image processing”, Addison-Wesley, 1993

[12] Matlab software package the language of technical computing http://www.mathworks.com/

[13] Adobe Photoshop professional image-editing software http://www.adobe.com/

